OFFSET
0,3
FORMULA
Numbers k such that k + 1 divides 2^(k + 2) - 2. - Vaclav Kotesovec, Mar 24 2021
EXAMPLE
Let E(n) = Euler(n, 1) and B(n) = Bernoulli(n, 1).
2*E(0) = 4*B(1) = 2;
2*E(1) = 6*B(2) = 1;
2*E(5) = 42*B(6) = 1;
2*E(17) = 58254*B(18) = 3202291;
2*E(41) = 418861572486*B(42) = 352552873457246307069012458671.
MATHEMATICA
Join[{0}, Select[Range[1000], BernoulliB[#+1, 1] != 0 && IntegerQ[EulerE[#, 1]/BernoulliB[#+1, 1]] &]] (* Vaclav Kotesovec, Mar 24 2021 *)
Select[Range[100000], IntegerQ[(2*(-1 + 2^#))/#] & ] - 1 (* Vaclav Kotesovec, Mar 24 2021 *)
L342320 := Select[Range[0, 10000], Divisible[2^(# + 2) - 2, # + 1] &];
A342320[n_] := L342320[[n + 1]] (* Peter Luschny, Apr 10 2021 *)
CROSSREFS
a(n) = A014741(n+1) - 1. - Vaclav Kotesovec, Mar 24 2021
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 24 2021
STATUS
approved