login
A342317
T(n, k) = [x^n] 2^n*P(n, x), where P(n, x) = (1 + 4*x)^(n + 1) + (1 - 2^(-2*n-1))*(2 + 4*x)^(n + 1). Triangle read by rows, T(n, k) for 0 <= k <= n+1 if n >= 0 and by convention T(-1, 0) = 0.
0
0, 2, 6, 9, 44, 60, 35, 234, 564, 504, 135, 1144, 3816, 6112, 4080, 527, 5430, 23000, 51120, 61360, 32736, 2079, 25332, 130500, 368480, 614160, 589632, 262080, 8255, 116466, 709548, 2436840, 5160400, 6880608, 5504576, 2097024
OFFSET
-1,2
COMMENTS
The polynomials are the numerators of an integral representing the signed Euler numbers A163982 similar to the integral given by Jensen representing the Bernoulli numbers.
REFERENCES
J. L. W. V. Jensen, Remarques relatives aux réponses de MM. Franel et Kluyver. L'Intermédiaire des mathématiciens, tome II, Gauthier-Villars et Fils, 346-347, 1895.
FORMULA
A163982(n) = -(2*Pi/(n + 1)) Integral_{x in R}(P(n, i*x)/(exp(-Pi*z) + exp(Pi*z))^2, where R is the real line.
EXAMPLE
[-1] 0;
[ 0] 2, 6;
[ 1] 9, 44, 60;
[ 2] 35, 234, 564, 504;
[ 3] 135, 1144, 3816, 6112, 4080;
[ 4] 527, 5430, 23000, 51120, 61360, 32736;
[ 5] 2079, 25332, 130500, 368480, 614160, 589632, 262080;
[ 6] 8255, 116466, 709548, 2436840, 5160400, 6880608, 5504576, 2097024;
MAPLE
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
p := (n, x) -> (1 + 4*x)^(n + 1) + (1 - 2^(-2*n-1))*(2 + 4*x)^(n + 1);
c := n -> `if`(n = -1, 0, CoeffList(expand(2^n*p(n, x)))):
seq(c(n), n = -1..8);
# The Jensen-type integral:
JInt := n -> (2*Pi/(n + 1))*int(p(n, I*x)/(exp(-Pi*x) + exp(Pi*x))^2,
x = -infinity..infinity): seq(JInt(n), n=0..9);
MATHEMATICA
p[n_, z_] := 2^(2 n)(2 - 4^(-n))(1 + 2 z)^(1 + n) + 2^n (1 + 4 z)^(1 + n);
c[n_] := If[n == -1, {0}, CoefficientList[p[n, z], z]];
Table[c[n], {n, -1, 6}] // Flatten
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 20 2021
STATUS
approved