login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244060
Sum of digits of (2^n)!.
2
1, 2, 6, 9, 63, 108, 324, 828, 1989, 4635, 10845, 24363, 54279, 118827, 258705, 565389, 1216134, 2611359, 5584518, 11875977, 25184205, 53209728, 112069377, 235502361, 493827687, 1033041267, 2156974227, 4495662081, 9355185828, 19437382512, 40329016200
OFFSET
0,2
FORMULA
a(n) = A007953(A000722(n)). - Michel Marcus, Jun 19 2014
EXAMPLE
If n=4, 2^4! = 16! = 20922789888000, with digit sum 63. - N. J. A. Sloane, Jun 18 2014
MATHEMATICA
f[n_] := Total[ IntegerDigits[ (2^n)!]]; Array[f, 20, 0]
PROG
(PARI) a(n) = sumdigits((2^n)!); \\ Michel Marcus, Oct 25 2021
(Python)
from math import factorial
def A244060(n): return sum(int(d) for d in str(factorial(2**n))) # Chai Wah Wu, Oct 26 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Jun 18 2014
EXTENSIONS
a(26)-a(30) from Chai Wah Wu, Oct 25 2021
STATUS
approved