login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332689
Number of distinct areas of integer-sided triangles whose area equals n times their perimeter.
2
5, 17, 41, 41, 47, 127, 77, 81, 171, 132, 99, 283, 94, 205, 349, 158, 115, 457, 122, 296, 530, 267, 134, 546, 219, 260, 428, 471, 130, 953, 144, 264, 613, 332, 557, 1031, 139, 346, 614, 600, 162, 1381, 169, 562, 1132, 348, 186, 1000, 363, 593, 688, 571, 164, 1123
OFFSET
1,1
COMMENTS
Gives the row lengths of the irregular array A290451.
LINKS
James Grime and Brady Haran, Superhero Triangles, Numberphile video (2020).
EXAMPLE
For n = 2, there are 18 different (noncongruent) Heronian triangles whose area equals twice their perimeter, so A007237(2) = 18. However, two of those 18 triangles share the area 168. So there are only 17 distinct areas. Therefore, a(2) = 17.
MATHEMATICA
a[k_] := Block[{v={}, r, s, t}, Do[ If[r <= s && 4 k^2 < r s <= 12 k^2 && IntegerQ[t = 4 k^2 (r + s)/(r s - 4 k^2)] && t >= s, AppendTo[v, r + s + t]], {r, Floor[2 Sqrt[3] k]}, {s, Floor[4 k^2/r], Ceiling[12 k^2/r]}]; Length@ Union@ v]; Array[a, 20] (* Giovanni Resta, Mar 04 2020 *)
PROG
(Python)
from math import sqrt
def A332689(n):
L = []; k = 4*n*n
for x in range(1, int(2*sqrt(3)*n) + 1):
for y in range(max(int(k/x) + 1, x), int((k + 2*n*sqrt(k + x*x))/x) + 1):
if k*(x+y)%(x*y-k) == 0:
s = x + y + k*(x+y)//(x*y-k)
if s not in L: L.append(s)
return len(L) # Ya-Ping Lu, Dec 28 2023
CROSSREFS
Sequence in context: A011931 A260981 A078866 * A342320 A341759 A144620
KEYWORD
nonn
AUTHOR
Jeppe Stig Nielsen, Feb 19 2020
EXTENSIONS
a(8)-a(54) from Giovanni Resta, Mar 04 2020
STATUS
approved