login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332690
Sum of all numbers in bijective base-9 numeration with digit sum n.
2
0, 1, 12, 124, 1248, 12496, 124992, 1249984, 12499968, 124999936, 1249999862, 12499999623, 124999998144, 1249999984364, 12499999840480, 124999998308464, 1249999981991936, 12499999808733888, 124999997974967808, 1249999978624935680, 12499999774999871588
OFFSET
0,3
COMMENTS
Different from A016134.
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,1,-8,-17,-26,-35,-44,-53,-62,-81,-72,-63,-54,-45,-36,-27,-18,-9).
FORMULA
G.f.: (Sum_{j=1..9} j*x^j) / ((B(x) - 1) * (9*B(x) - 1)) with B(x) = Sum_{j=1..9} x^j.
a(n) = A028904(A332691(n)).
a(n) = A016134(n-1) for n = 1..9.
EXAMPLE
a(2) = 12 = 2 + 10 = 2_bij9 + 11_bij9.
MAPLE
b:= proc(n) option remember; `if`(n=0, [1, 0], add((p->
[p[1], p[2]*9+p[1]*d])(b(n-d)), d=1..min(n, 9)))
end:
a:= n-> b(n)[2]:
seq(a(n), n=0..23);
KEYWORD
nonn,base,easy
AUTHOR
Alois P. Heinz, Feb 19 2020
STATUS
approved