login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260981
Primes p that are equal to the sum of the first k primes where p=prime(prime(k)).
0
OFFSET
1,1
COMMENTS
Terms listed are the only three primes p found to satisfy the condition that p = prime(m) = Sum_{i=1..k} prime(i) where m=prime(k).
From Jon E. Schoenfield, Aug 19 2015: (Start)
Let S(k) be the sum of the first k primes, and let PP(k) = prime(prime(k)); then the terms of the sequence are the values of prime(prime(k)) at those values of k at which S(k) = PP(k). (This occurs at k = 2, 4 and 6.)
Given the behavior of the ratio S(k)/PP(k) over the range of values of k shown in the table below, it seems very unlikely that this ratio will return to 1 for any k beyond the values that have been tested, and thus very likely that a(3) = 41 = PP(6) is the final term in the sequence:
k S(k) PP(k) S(k)/PP(k)
====== =========== ======== ==============
1 2 3 0.666666...
2 5 = 5 1
3 10 11 0.909090...
4 17 = 17 1
5 28 31 0.903225...
6 41 = 41 1
7 58 59 0.983050...
8 77 67 1.149253...
9 100 83 1.204819...
10 129 109 1.183486...
...
100 24133 3911 6.170544...
1000 3682913 80917 45.514700...
10000 496165411 1366661 363.049367...
100000 62260698721 20491057 3038.432752... (End)
EXAMPLE
k=3: prime(3) = 5 = 2+3 = prime(1) + prime(2).
k=7: prime(7) = 17 = 2+3+5+7 = prime(1) + prime(2) + prime(3) + prime(4).
k=13: prime(13) = 41 = 2+3+5+7+11+13 = prime(1) + prime(2) + prime(3) + prime(4) + prime(5) + prime(6).
PROG
(C#) // The code is provided by Ali Adams (www.heliwave.com)
using System; using System.Collections.Generic; using System.Text; namespace PrimeSum { class Program { static void Main(string[] args) { Console.WriteLine("Prime\tP\tSum"); // 17 = P7 = Sum[2..7] for (int i = 0; i < 1000000; i++) { // prime = 17 long prime = Numbers.Primes[i]; // i = 6 // order = 7 int order = i + 1; if (Numbers.IsPrime(order)) { int index = Numbers.IndexOfPrime(order); StringBuilder str = new StringBuilder(); long sum = 0L; for (int j = 0; j < index; j++) { long p = Numbers.Primes[j]; sum += p; str.Append(p + "+"); } str.Remove(str.Length - 1, 1); if (sum == prime) { Console.WriteLine(prime + "\t" + order + "\t" + str.ToString()); } } } Console.WriteLine("Press any key to exit ..."); Console.ReadKey(); } } }
CROSSREFS
KEYWORD
nonn,fini,bref,less
AUTHOR
Waleed Mohammed, Ali Adams, Aug 06 2015
STATUS
approved