login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A068205 Denominator of S(n)/Pi^n, where S(n) = Sum((4k+1)^(-n),k,-inf,+inf). 3
4, 8, 32, 96, 1536, 960, 184320, 161280, 8257536, 2903040, 14863564800, 638668800, 1569592442880, 49816166400, 5713316492083200, 83691159552000, 1096956766479974400, 2845499424768000, 6713375410857443328000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Table of n, a(n) for n=1..19.

N. D. Elkies, On the sums Sum((4k+1)^(-n),k,-inf,+inf), arXiv:math/0101168 [math.CA], 2001-2003.

N. D. Elkies, On the sums Sum_{k = -infinity .. infinity} (4k+1)^(-n), Amer. Math. Monthly, 110 (No. 7, 2003), 561-573.

FORMULA

There is a simple formula in terms of Euler and Bernoulli numbers.

EXAMPLE

The first few values of S(n)/Pi^n are 1/4, 1/8, 1/32, 1/96, 5/1536, 1/960, ...

MATHEMATICA

s[n_?EvenQ] := (-1)^(n/2-1)*(2^n-1)*BernoulliB[n]/(2*n!); s[n_?OddQ] := (-1)^((n-1)/2)*2^(-n-1)*EulerE[n-1]/(n-1)!; Table[s[n] // Denominator, {n, 1, 19}] (* Jean-François Alcover, May 13 2013 *)

a[n_] := Sum[((-1)^k/(2*k+1))^n, {k, 0, Infinity}] /. Pi -> 1 // Denominator; Table[a[n], {n, 1, 19}] (* Jean-François Alcover, Jun 20 2014 *)

CROSSREFS

Numerators: A050970.

Sequence in context: A086344 A209084 A254216 * A241684 A254878 A247473

Adjacent sequences:  A068202 A068203 A068204 * A068206 A068207 A068208

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane, Mar 24 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 02:36 EST 2016. Contains 278959 sequences.