The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209084 a(n) = 2*a(n-1) + 4*a(n-2) with n>1, a(0)=0, a(1)=4. 2
 0, 4, 8, 32, 96, 320, 1024, 3328, 10752, 34816, 112640, 364544, 1179648, 3817472, 12353536, 39976960, 129368064, 418643968, 1354760192, 4384096256, 14187233280, 45910851584, 148570636288, 480784678912, 1555851902976, 5034842521600, 16293092655104 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)/A063727(n) are convergents for A134972. Abs(Sum_{i=0..n} C(n,n-i)*a(i)-(sqrt(5)-1)* A033887(n))->0. - Seiichi Kirikami, Jan 20 2016 REFERENCES E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966. LINKS Bruno Berselli, Table of n, a(n) for n = 0..500 Index entries for linear recurrences with constant coefficients, signature (2,4). FORMULA a(n) = (2/sqrt(5))*((1+sqrt(5))^n-(1-sqrt(5))^n). G.f.: 4*x/(1-2*x-4*x^2). - Bruno Berselli, Mar 08 2012 a(n) = 4*A085449(n) = 2*A103435(n). - Bruno Berselli, Mar 08 2012 MATHEMATICA RecurrenceTable[{a[n]==2*a[n-1]+4*a[n-2], a[0]==0, a[1]==4], a, {n, 30}] LinearRecurrence[{2, 4}, {0, 4}, 40] (* Vincenzo Librandi, Jan 16 2016 *) PROG (PARI) concat(0, Vec(4*x/(1-2*x-4*x^2) + O(x^40))) \\ Michel Marcus, Jan 16 2016 (MAGMA) I:=[0, 4]; [n le 2 select I[n] else 2*Self(n-1)+4*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 16 2016 CROSSREFS Cf. A063727, A033887, A134972. Cf. A086344 (this sequence with signs). Sequence in context: A149093 A149094 A086344 * A254216 A304940 A068205 Adjacent sequences:  A209081 A209082 A209083 * A209085 A209086 A209087 KEYWORD nonn,easy AUTHOR Seiichi Kirikami, Mar 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 7 23:38 EDT 2020. Contains 336279 sequences. (Running on oeis4.)