login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Product_{n >= 1} cos(1/n).
5

%I #38 Sep 13 2024 03:33:12

%S 3,8,8,5,3,6,1,5,3,3,3,5,1,7,5,8,5,9,1,8,4,3,2,9,5,7,5,6,8,7,0,3,5,9,

%T 0,5,0,1,3,9,0,0,5,2,8,5,9,7,5,1,7,9,2,1,9,1,3,1,8,4,6,1,1,9,9,8,7,9,

%U 8,7,4,9,4,3,4,6,3,3,9,3,2,7,6,8,3,8,8,4,3,1,9,7,8,1,3,8,3,4,0,8,2,2,4,1,3

%N Decimal expansion of Product_{n >= 1} cos(1/n).

%H Charles R Greathouse IV, <a href="/A118817/b118817.txt">Table of n, a(n) for n = 0..10000</a>

%F Equals exp(Sum_{n>=1} -c(n)*zeta(2*n)), where c(n) = A046990(n)/A046991(n).

%F Equals exp(-Sum_{n>=1} (2^(2*n)-1) * Zeta(2*n)^2 / (n*Pi^(2*n)) ). - _Vaclav Kotesovec_, Sep 20 2014

%F Equals exp(Sum_{k>=1} (-1)^k*2^(2*k-1)*(2^(2*k)-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number. - _Amiram Eldar_, Jul 30 2023

%e 0.38853615333517585918432957568703590501390...

%p nn:= 120:

%p p:= product(cos(1/n), n=1..infinity):

%p f:= evalf(p, nn+10):

%p s:= convert(f, string):

%p seq(parse(s[n+1]), n=1..nn); # _Alois P. Heinz_, Nov 04 2013

%t S = Series[Log[Cos[x]], {x, 0, 400}]; N[Exp[N[Sum[SeriesCoefficient[S, 2k] Zeta[2k], {k, 1, 200}], 70]], 50]

%t Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[(2^(2*n) - 1)*Zeta[2*n]^2/(n*Pi^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* _Vaclav Kotesovec_, Sep 20 2014 *)

%o (PARI) exp(-sumpos(n=1,-log(cos(1/n)))) \\ warning: requires 2.6.2 or greater; _Charles R Greathouse IV_, Nov 04 2013

%o (PARI) T(n)=((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!

%o lm=lambertw(2*log(Pi/2)*10^default(realprecision))/2/log(Pi/2); exp(-sum(n=1,lm,T(n)*zeta(2*n))) \\ _Charles R Greathouse IV_, Nov 06 2013

%Y Cf. A046990, A046991.

%Y Cf. A051762, A085365, A246945, A230821, A249673.

%Y Cf. A027641, A027642.

%K cons,nonn

%O 0,1

%A _Fredrik Johansson_, May 23 2006

%E Corrected offset and extended by _Robert G. Wilson v_, Nov 03 2013