login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130220
Number of partitions of n-set in which number of blocks of size k is odd (or zero) for every k.
5
1, 1, 1, 5, 5, 27, 117, 331, 1213, 6579, 47193, 140527, 1213841, 4617927, 48210879, 243443739, 2392565149, 10377087115, 125434781845, 725455816883, 8086277450629, 59694530600595, 614469256831895, 4650128350629285
OFFSET
0,4
LINKS
FORMULA
E.g.f.: Product_{k>0} (1+sinh(x^k/k!)).
EXAMPLE
a(4)=5 because we have abcd, a|bcd, acd|b, abd|c and abc|d.
MAPLE
g:=product(1+sinh(x^k/factorial(k)), k=1..30): gser:=series(g, x=0, 28): seq(factorial(n)*coeff(gser, x, n), n=0..24); # Emeric Deutsch, Sep 01 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(`if`(j=0 or irem(j, 2)=1, multinomial(n, n-i*j, i$j)
/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[If[j == 0 || Mod[j, 2] == 1, multinomial[n, Join[{n - i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 04 2007, Aug 05 2007
EXTENSIONS
More terms from Emeric Deutsch, Sep 01 2007
STATUS
approved