login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130219
Number of partitions of 2n-set in which number of blocks of size k is even (or zero) for every k.
7
1, 1, 4, 56, 631, 15457, 582374, 18589286, 894499204, 51154344582, 3823359163826, 274722100927166, 25458967562911128, 2569179797929092506, 284554990016509385086, 37830153187190688287522, 5093072752898942262610007, 798814778335473578083666573
OFFSET
0,3
LINKS
FORMULA
E.g.f.: Product_{k>0} cosh(x^k/k!).
EXAMPLE
a(2)=4 because we have ab|cd, ac|bd, ad|bc and a|b|c|d.
MAPLE
g:=product(cosh(x^k/factorial(k)), k=1..35): gser:=series(g, x=0, 32): seq(factorial(2*n)*coeff(gser, x, 2*n), n=0..14); # Emeric Deutsch, Sep 01 2007
# second Maple program:
g:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
`if`(irem(j, 2)=0, g(n-i*j, i-1, p+j*i)/j!/i!^j, 0), j=0..n/i)))
end:
a:= n-> g(2*n$2, 0):
seq(a(n), n=0..20); # Alois P. Heinz, Mar 06 2015
MATHEMATICA
g[n_, i_, p_] := g[n, i, p] = If[n == 0, p!, If[i<1, 0, Sum[If[Mod[j, 2] == 0, g[n - i*j, i-1, p + j*i]/j!/i!^j, 0], {j, 0, n/i}]]]; a[n_] := g[2*n, 2*n, 0]; Table[ a[n], {n, 0, 20}] (* Jean-François Alcover, May 12 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 04 2007, Aug 05 2007
EXTENSIONS
More terms from Emeric Deutsch, Sep 01 2007
STATUS
approved