login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111724 Number of partitions of an n-set with an even number of blocks of size 1. 9
0, 2, 1, 11, 21, 117, 428, 2172, 10727, 59393, 345335, 2143825, 14038324, 96834090, 700715993, 5305041715, 41910528809, 344714251149, 2945819805408, 26107419715988, 239556359980239, 2272364911439153, 22252173805170347, 224666265799310801, 2335958333831561032 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..576

FORMULA

E.g.f.: cosh(x)*exp(exp(x)-1-x).

More generally, e.g.f. for number of partitions of an n-set with an even number of blocks of size k is cosh(x^k/k!)*exp(exp(x)-1-x^k/k!).

MAPLE

b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,

      `if`(j=1, 1-t, t))*binomial(n-1, j-1), j=1..n))

    end:

a:= n-> b(n, 1):

seq(a(n), n=1..30);  # Alois P. Heinz, May 10 2016

MATHEMATICA

Rest[ Range[0, 24]! CoefficientList[ Series[ Cosh[x]Exp[Exp[x] - 1 - x], {x, 0, 23}], x]] (* Robert G. Wilson v *)

PROG

(Python)

from sympy.core.cache import cacheit

from sympy import binomial

@cacheit

def b(n, t): return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1) for j in range(1, n + 1))

def a(n): return b(n, 1)

print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 10 2017

CROSSREFS

Cf. A097514, A113235, A063083, A062282, A111723, A111752, A111753.

Sequence in context: A300455 A270264 A305877 * A184299 A080371 A151337

Adjacent sequences:  A111721 A111722 A111723 * A111725 A111726 A111727

KEYWORD

easy,nonn

AUTHOR

Vladeta Jovovic, Nov 17 2005

EXTENSIONS

More terms from Robert G. Wilson v, Nov 22 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 19:02 EST 2021. Contains 349424 sequences. (Running on oeis4.)