login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111724
Number of partitions of an n-set with an even number of blocks of size 1.
9
0, 2, 1, 11, 21, 117, 428, 2172, 10727, 59393, 345335, 2143825, 14038324, 96834090, 700715993, 5305041715, 41910528809, 344714251149, 2945819805408, 26107419715988, 239556359980239, 2272364911439153, 22252173805170347, 224666265799310801, 2335958333831561032
OFFSET
1,2
LINKS
FORMULA
E.g.f.: cosh(x)*exp(exp(x)-1-x).
More generally, e.g.f. for number of partitions of an n-set with an even number of blocks of size k is cosh(x^k/k!)*exp(exp(x)-1-x^k/k!).
MAPLE
b:= proc(n, t) option remember; `if`(n=0, t, add(b(n-j,
`if`(j=1, 1-t, t))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 1):
seq(a(n), n=1..30); # Alois P. Heinz, May 10 2016
MATHEMATICA
Rest[ Range[0, 24]! CoefficientList[ Series[ Cosh[x]Exp[Exp[x] - 1 - x], {x, 0, 23}], x]] (* Robert G. Wilson v *)
PROG
(Python)
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, t): return t if n==0 else sum(b(n - j, (1 - t if j==1 else t))*binomial(n - 1, j - 1) for j in range(1, n + 1))
def a(n): return b(n, 1)
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Aug 10 2017
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Nov 17 2005
EXTENSIONS
More terms from Robert G. Wilson v, Nov 22 2005
STATUS
approved