login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130221
Number of partitions of n-set in which number of blocks of size 2k is odd (or zero) for every k.
1
1, 1, 2, 5, 12, 37, 158, 667, 2740, 13461, 74710, 412095, 2406880, 15450541, 103187698, 715323395, 5236160612, 40014337437, 318488475658, 2637143123027, 22603231117364, 201268520010153, 1855401760331982, 17624602999352535, 173071602624629536
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(sinh(x))*Product_{k>0} (1+sinh(x^(2*k)/(2*k)!)).
EXAMPLE
a(4)=12 because from the 15 (=A000110(4)) partitions of the 4-set {a,b,c,d} only the partitions ab|cd, ac|bd and ad|bc do not qualify.
MAPLE
g:=exp(sinh(x))*(product(1+sinh(x^(2*k)/factorial(2*k)), k=1..25)): gser:= series(g, x=0, 30): seq(factorial(n)*coeff(gser, x, n), n=0..23); # Emeric Deutsch, Aug 28 2007
# second Maple program:
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
`if`(j=0 or irem(i, 2)=1 or irem(j, 2)=1, multinomial(
n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..30); # Alois P. Heinz, Mar 08 2015
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 || Mod[j, 2] == 1, multinomial[n, Join[{ n - i*j}, Array[i &, j]]]/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 22 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A003724 A138314 A115277 * A036782 A050237 A050258
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Aug 05 2007, Aug 05 2007
EXTENSIONS
More terms from Emeric Deutsch, Aug 28 2007
STATUS
approved