login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n-set in which number of blocks of size 2k is odd (or zero) for every k.
1

%I #13 Mar 24 2019 22:44:34

%S 1,1,2,5,12,37,158,667,2740,13461,74710,412095,2406880,15450541,

%T 103187698,715323395,5236160612,40014337437,318488475658,

%U 2637143123027,22603231117364,201268520010153,1855401760331982,17624602999352535,173071602624629536

%N Number of partitions of n-set in which number of blocks of size 2k is odd (or zero) for every k.

%H Alois P. Heinz, <a href="/A130221/b130221.txt">Table of n, a(n) for n = 0..500</a>

%F E.g.f.: exp(sinh(x))*Product_{k>0} (1+sinh(x^(2*k)/(2*k)!)).

%e a(4)=12 because from the 15 (=A000110(4)) partitions of the 4-set {a,b,c,d} only the partitions ab|cd, ac|bd and ad|bc do not qualify.

%p g:=exp(sinh(x))*(product(1+sinh(x^(2*k)/factorial(2*k)), k=1..25)): gser:= series(g,x=0,30): seq(factorial(n)*coeff(gser,x,n),n=0..23); # _Emeric Deutsch_, Aug 28 2007

%p # second Maple program:

%p with(combinat):

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(

%p `if`(j=0 or irem(i, 2)=1 or irem(j, 2)=1, multinomial(

%p n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Mar 08 2015

%t multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[If[j == 0 || Mod[i, 2] == 1 || Mod[j, 2] == 1, multinomial[n, Join[{ n - i*j}, Array[i &, j]]]/j!*b[n - i*j, i - 1], 0], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Dec 22 2016, after _Alois P. Heinz_ *)

%Y Cf. A000110, A102759.

%K easy,nonn

%O 0,3

%A _Vladeta Jovovic_, Aug 05 2007, Aug 05 2007

%E More terms from _Emeric Deutsch_, Aug 28 2007