login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A130239
Maximal index k of the square of a Fibonacci number such that Fib(k)^2 <= n (the 'lower' squared Fibonacci Inverse).
9
0, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
OFFSET
0,2
LINKS
FORMULA
a(n) = max(k | Fib(k)^2 <= n) = A130233(floor(sqrt(n))).
a(n) = floor(arcsinh(sqrt(5n)/2)/log(phi)), where phi=(1+sqrt(5))/2.
G.f.: (1/(1-x))*Sum_{k>=1} x^(Fib(k)^2).
EXAMPLE
a(10) = 4 since Fib(4)^2 = 9 <= 10 but Fib(5)^2 = 25 > 10.
MATHEMATICA
A130233[n_]:= Floor[Log[GoldenRatio, 3/2 +n*Sqrt[5]]];
Table[A130233[Floor[Sqrt[n]]], {n, 0, 120}] (* G. C. Greubel, Mar 18 2023 *)
PROG
(Magma)
A130233:= func< n | Floor(Log(3/2 + n*Sqrt(5))/Log((1+Sqrt(5))/2)) >;
[A130233(Floor(Sqrt(n))): n in [0..120]]; // G. C. Greubel, Mar 18 2023
(SageMath)
def A130233(n): return int(log(3/2 +n*sqrt(5), golden_ratio))
def A130239(n): return A130233(floor(sqrt(n)))
[A130239(n) for n in range(121)] # G. C. Greubel, Mar 18 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 17 2007, May 28 2007
STATUS
approved