login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130240
Partial sums of A130239.
14
0, 2, 4, 6, 9, 12, 15, 18, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A130239(k).
a(n) = (n+1)*A130233(sqrt(n)) - Fib(A130233(sqrt(n)) + 1) * Fib(A130232(sqrt(n))).
G.f.: (1/(1-x)^2) * Sum_{k>=1} x^(Fib(k)^2).
MATHEMATICA
A130233[n_]:= Floor[Log[GoldenRatio, 3/2 + n*Sqrt[5]]];
A130240[n_]:= A130240[n]= Sum[A130233[Floor[Sqrt[j]]], {j, 0, n}];
Table[A130240[n], {n, 0, 70}] (* G. C. Greubel, Mar 18 2023 *)
PROG
(Magma)
A130233:= func< n | Floor(Log(3/2 + n*Sqrt(5))/Log((1+Sqrt(5))/2)) >;
A130240:= func< n | (&+[A130233(Floor(Sqrt(j))): j in [0..n]]) >;
[A130240(n): n in [0..70]]; // G. C. Greubel, Mar 18 2023
(SageMath)
def A130233(n): return int(log(3/2 +n*sqrt(5), golden_ratio))
def A130240(n): return sum( A130233(floor(sqrt(j))) for j in range(n+1) )
[A130240(n) for n in range(71)] # G. C. Greubel, Mar 18 2023
KEYWORD
nonn
AUTHOR
Hieronymus Fischer, May 17 2007
STATUS
approved