login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194847
Write n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0; sequence gives i values.
12
2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10
OFFSET
0,1
COMMENTS
Each n >= 0 has a unique representation as n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0. This is the combinatorial number system of degree t = 3, where we get [A194847, A194848, A056558]. For degree t = 2 we get [A002024, A002262] and A138036.
REFERENCES
D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.
FORMULA
Equals A056556(n) + 2.
EXAMPLE
The i,j,k coordinates for n equal to 0 through 10 are:
0, [2, 1, 0]
1, [3, 1, 0]
2, [3, 2, 0]
3, [3, 2, 1]
4, [4, 1, 0]
5, [4, 2, 0]
6, [4, 2, 1]
7, [4, 3, 0]
8, [4, 3, 1]
9, [4, 3, 2]
10, [5, 1, 0]
MAPLE
# Given x and a list a, returns smallest i such that x >= a[i].
whereinlist:=proc(x, a) local i:
if whattype(a) <> list then ERROR(`a not a list`); fi:
for i from 1 to nops(a) do if x < a[i] then break; fi; od:
RETURN(i-1); end:
t3:=[seq(binomial(n, 3), n=0..50)];
t2:=[seq(binomial(n, 2), n=0..50)];
t1:=[seq(binomial(n, 1), n=0..50)];
for n from 0 to 200 do
i3:=whereinlist(n, t3);
i2:=whereinlist(n-t3[i3], t2);
i1:=whereinlist(n-t3[i3]-t2[i2], t1);
L[n]:=[i3-1, i2-1, i1-1];
od:
[seq(L[n][1], n=0..200)];
PROG
(Python)
from math import comb
from sympy import integer_nthroot
def A194847(n): return (m:=integer_nthroot(6*(n+1), 3)[0])+(n>=comb(m+2, 3))+1 # Chai Wah Wu, Nov 05 2024
CROSSREFS
The [i,j,k] values are [A194847, A194848, A056558], or equivalently [A056556+2, A056557+1, A056558]. See A194849 for the union list of triples.
Cf. also A002024, A002262, A138036.
Sequence in context: A130256 A335741 A103586 * A262070 A117806 A351115
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 03 2011
STATUS
approved