login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A194848
Write n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0; sequence gives j values.
11
1, 1, 2, 2, 1, 2, 2, 3, 3, 3, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 1, 2, 2
OFFSET
0,3
COMMENTS
See A194847.
REFERENCES
D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.
FORMULA
Equals A056557(n) + 1.
MAPLE
See A194847.
PROG
(Python)
from math import isqrt, comb
from sympy import integer_nthroot
def A194848(n): return (k:=isqrt(r:=n+1-comb((m:=integer_nthroot(6*(n+1), 3)[0])-(n<comb(m+2, 3))+2, 3)<<1))+((r<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Nov 04 2024
CROSSREFS
The [i,j,k] values are [A194847, A194848, A056558].
Sequence in context: A014420 A029289 A181834 * A289497 A029328 A109831
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 03 2011
STATUS
approved