login
A029328
Expansion of 1/((1-x^4)(1-x^5)(1-x^6)(1-x^9)).
0
1, 0, 0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 5, 4, 5, 5, 6, 6, 8, 7, 8, 9, 10, 10, 12, 11, 13, 14, 15, 15, 18, 17, 19, 20, 22, 22, 25, 24, 27, 29, 30, 30, 34, 34, 37, 38, 40, 41, 46, 45, 48, 50, 53, 54, 59, 58, 62, 65
OFFSET
0,10
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,1,1,0,0,0,-1,-1,0,-1,-1,0,0,0,1,1,1,0,0,0,-1).
FORMULA
G.f.: 1/((1-x^4)(1-x^5)(1-x^6)(1-x^9)).
a(n) = a(n-4)+a(n-5)+a(n-6)-a(n-10)-a(n-11)-a(n-13)-a(n-14)+a(n-18)+a(n-19)+a(n-20)-a(n-24). - Wesley Ivan Hurt, Apr 22 2021
MATHEMATICA
CoefficientList[Series[1/((1-x^4)(1-x^5)(1-x^6)(1-x^9)), {x, 0, 100}], x] (* Jinyuan Wang, Mar 11 2020 *)
CROSSREFS
Sequence in context: A181834 A194848 A289497 * A109831 A247352 A097266
KEYWORD
nonn,easy
STATUS
approved