login
A130230
Primes p == 5 (mod 8) such that the Diophantine equation x^2 - p*y^2 = -4 has a solution in odd integers x, y.
2
5, 13, 29, 53, 61, 109, 149, 157, 173, 181, 229, 277, 293, 317, 397, 421, 461, 509, 541, 613, 653, 661, 733, 773, 797, 821, 853, 941, 1013, 1021, 1061, 1069, 1093, 1109, 1117, 1181, 1229, 1237, 1277, 1373, 1381, 1429, 1453, 1493, 1549, 1597
OFFSET
1,1
COMMENTS
For the Diophantine equation x^2 - p*y^2 = -4 to have a solution in odd integers x, y we must have p == 5 (mod 8)
Calculated using Dario Alpern's quadratic Diophantine solver, see link.
Suggested by a discussion on the Number Theory Mailing List, circa Aug 01 2007.
CROSSREFS
Cf. A130229.
Sequence in context: A194270 A194700 A220500 * A106931 A078370 A308464
KEYWORD
nonn
AUTHOR
Warut Roonguthai, Aug 06 2007
STATUS
approved