login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160823
A transform of the large Schroeder numbers.
2
1, 1, 3, 5, 13, 27, 69, 161, 415, 1033, 2701, 6983, 18521, 49041, 131723, 354493, 962381, 2620675, 7178285, 19724513, 54430023, 150641937, 418294813, 1164528399, 3250685297, 9094701729, 25501672595, 71649158709, 201687341901
OFFSET
0,3
COMMENTS
Hankel transform is A060656(n+1).
LINKS
FORMULA
G.f.: 1/(1-x-2x^2/(1-x^2/(1-x-2x^2/(1-x^2/(1-x-2x^2/(1-x^2/(1-...))))))) (continued fraction);
G.f.: (1-x-x^2-sqrt(1-2*x-5*x^2+6*x^3+x^4))/(2*x^2*(1-x)).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*A006318(k).
Conjecture: (n+2)*a(n) -3*(n+1)*a(n-1) +3(2-n)*a(n-2) +(11*n-20)*a(n-3) +(11-5*n)*a(n-4) + (4-n)*a(n-5)=0. - R. J. Mathar, Nov 16 2011
a(n) ~ sqrt((-36 + 63*sqrt(2) + sqrt(8666 - 4936*sqrt(2)))/8) * ((1 + sqrt(13 + 8*sqrt(2)))/2)^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, May 01 2018
EXAMPLE
G.f. = 1 + x + 3*x^2 + 5*x^3 + 13*x^4 + 27*x^5 + 69*x^6 + 161*x^7 + ...
MATHEMATICA
CoefficientList[Series[(1-x-x^2-Sqrt[1-2*x-5*x^2+6*x^3+x^4])/(2*x^2*(1- x)), {x, 0, 50}], x] (* G. C. Greubel, Apr 30 2018 *)
PROG
(PARI) x='x+O('x^50); Vec((1-x-x^2-sqrt(1-2*x-5*x^2+6*x^3+x^4))/(2*x^2*(1-x))) \\ G. C. Greubel, Apr 30 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1-x-x^2-Sqrt(1-2*x-5*x^2+6*x^3+x^4))/(2*x^2*(1-x)))); // G. C. Greubel, Apr 30 2018
CROSSREFS
Sequence in context: A026569 A035082 A005198 * A077443 A147196 A110225
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 27 2009
STATUS
approved