Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2491 #35 Oct 27 2023 05:53:22
%S 0,1,1,3,5,13,27,68,160,404,1010,2604,6726,17661,46628,124287,333162,
%T 898921,2437254,6640537,18166568,49890419,137478389,380031868,
%U 1053517588,2928246650,8158727139,22782938271,63752461474,178740014515,502026565792,1412409894224
%N a(n) is the number of forests with n (unlabeled) nodes in which each component tree is planted, that is, is a rooted tree in which the root has degree 1.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A005198/b005198.txt">Table of n, a(n) for n = 1..2136</a> (first 118 terms from Washington Bomfim)
%H E. M. Palmer and A. J. Schwenk, <a href="http://dx.doi.org/10.1016/0095-8956(79)90073-X">On the number of trees in a random forest</a>, J. Combin. Theory, B 27 (1979), 109-121.
%F a(1) = 0, if n >= 2 a(n) = Sum_{P_1(n)}( Product_{k=2..n} binomial(A000081(k-1) + c_k - 1, c_k) ), where P_1(n) are the partitions of n without parts equal to 1: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0. - _Washington Bomfim_, Jul 05 2020
%p g:= proc(n) option remember; `if`(n<=1, n, (add(add(d*g(d),
%p d=numtheory[divisors](j))*g(n-j), j=1..n-1))/(n-1))
%p end:
%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, add(
%p binomial(g(i-1)+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
%p end:
%p a:= n-> b(n$2):
%p seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 07 2020
%t g[n_] := g[n] = If[n <= 1, n, Sum[Sum[d g[d], {d, Divisors[j]}] g[n - j], {j, 1, n - 1}]/(n - 1)];
%t b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 2, 0, Sum[Binomial[g[i - 1] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]];
%t a[n_] := b[n, n];
%t Array[a, 40] (* _Jean-François Alcover_, Nov 08 2020, after _Alois P. Heinz_ *)
%o (PARI) g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1;
%o for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1])); f[m+1] };
%o global(max_n = 130); A000081 = vector(max_n, n, g(n-1));
%o seq(n)={my(s=0, D, c, P_1); if(n==1,return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1)));
%o s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k]) ),[2,n],[1,n]); s}; \\ _Washington Bomfim_, Jul 05 2020
%Y Cf. A000081.
%K nonn
%O 1,4
%A _N. J. A. Sloane_
%E Definition clarified and more terms added from Palmer-Schwenk by _N. J. A. Sloane_, May 29 2012