login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329467
Expansion of Product_{i>=1, j>=1} (1 + x^(i*j)) * (1 + x^(2*i*j)).
1
1, 1, 3, 5, 10, 16, 31, 47, 81, 126, 204, 308, 487, 720, 1098, 1613, 2395, 3461, 5061, 7213, 10362, 14633, 20712, 28926, 40497, 56000, 77527, 106349, 145791, 198339, 269678, 364106, 491125, 658708, 882077, 1175392, 1563884, 2071363, 2739095, 3608040, 4744058, 6216087
OFFSET
0,3
COMMENTS
Weigh transform of A069735.
FORMULA
G.f.: Product_{i>=1, j>=1} (1 + x^(2*i*j)) / (1 - x^(i*(2*j - 1))).
G.f.: Product_{k>=1} ((1 - x^(4*k)) / (1 - x^k))^A000005(k).
G.f.: Product_{k>=1} (1 + x^k)^A069735(k).
MATHEMATICA
nmax = 41; CoefficientList[Series[Product[((1 - x^(4 k))/(1 - x^k))^DivisorSigma[0, k], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d + 1) d If[EvenQ[d], DivisorSigma[0, d] + DivisorSigma[0, d/2], DivisorSigma[0, d]], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 41}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 13 2019
STATUS
approved