Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #10 Apr 13 2019 15:04:01
%S 1,0,0,1,1,1,3,5,10,16,38,66,143,268,564,1100,2282,4546,9382,18977,
%T 39112,79891,164917,339195,702041,1451628,3013442,6257561,13029327,
%U 27152492,56698062,118518363,248137778,520085704,1091520783,2293229235,4823466463
%N Total number of fixed points in free homeomorphically irreducible trees with n nodes.
%H F. Harary and E. M. Palmer, <a href="http://dx.doi.org/10.1017/S0305004100055857">Probability that a point of a tree is fixed</a>, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415.
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F Reference gives a recurrence.
%p Hpj := proc(Hofxy,p,j)
%p coeftayl(Hofxy,x=0,p) ;
%p coeftayl(%,y=0,j) ;
%p simplify(%) ;
%p end proc:
%p Hxy := proc(x,y,pmax,hxyinit)
%p if pmax = 0 then
%p x*y ;
%p else
%p pp := 1;
%p for p from 1 to pmax do
%p t :=1 ;
%p for j from 1 to p do
%p t := t*(1+x^p*y^j+add(x^(k*p),k=2..pmax+1))^Hpj(hxyinit,p,j) ;
%p end do:
%p pp := pp*t ;
%p end do:
%p x*y*%/(1+x*y) ;
%p end if;
%p end proc:
%p hxyfin := Hxy(x,y,0,0) ;
%p for pmax from 2 to 40 do
%p Hxy(x,y,pmax,hxyfin) ;
%p taylor(%,x=0,pmax+2) ;
%p convert(%,polynom) ;
%p taylor(%,y=0,pmax+2) ;
%p hxyfin := convert(%,polynom) ;
%p hxy := (1+x*y)*hxyfin+subs({x=x^2,y=1},hxyfin)*(1-x*y)-hxyfin^2*(1+x*y)/2+subs({x=x^2,y=y^2},hxyfin)*(x*y-1)/2 ;
%p for p from 0 to pmax do
%p ap := 0 ;
%p for j from 1 to p do
%p ap := ap+j*Hpj(hxy,p,j) ;
%p end do:
%p printf("%d,",ap) ;
%p end do:
%p print() ;
%p end do: # _R. J. Mathar_, Apr 13 2019
%Y Cf. A005200-A005202.
%K nonn,easy
%O 1,7
%A _N. J. A. Sloane_.
%E More terms from _R. J. Mathar_, Apr 13 2019