login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260021
Solutions to phi(n) = phi(sigma(n)) that are not given by Theorem 3 of Golomb's manuscript.
4
1, 3, 15, 45, 175, 357, 585, 608, 646, 962, 1071, 1292, 1443, 1508, 1586, 1664, 1665, 1898, 2275, 2295, 2379, 2745, 2847, 3285, 3848, 4082, 4329, 4514, 4641, 4736, 4845, 5018, 5402, 6123, 6232, 6344, 6475, 6771, 7052, 7065, 7137, 7202, 7215, 7527, 7592, 7803, 7808, 8103, 8138, 8398, 8541, 8685, 8906, 9344, 9526, 10322
OFFSET
1,2
REFERENCES
S. W. Golomb, Equality among number-theoretic functions, Manuscript, no date; Second update, Dec 29, 1992.
FORMULA
{k | 1==A353637(k) and 0==A354344(k)}. - Antti Karttunen, May 25 2022
PROG
(PARI)
A354344(n) = { if(!(n%15), n/=15, if(!(n%9), n/=9, if(!(n%8), n/=8, if(!(n%3), n/=3, if(!(n%2), n/=2, return(0)))))); ((n>5) && isprime(n) && isprime((1+n)/2)); };
A353637(n) = (eulerphi(sigma(n))==eulerphi(n));
isA260021(n) = (A353637(n) && !A354344(n)); \\ Antti Karttunen, May 24 2022
CROSSREFS
Setwise difference A006872 \ A354345. Subset of positions of zeros in A353636.
Cf. A354362 (subsequence).
Cf. also A005383, A353637, A354344.
Sequence in context: A301632 A074355 A201868 * A005560 A100747 A100737
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 14 2015
EXTENSIONS
Term a(1) = 1 prepended and terms a(14) .. a(56) added by Antti Karttunen, May 24 2022
STATUS
approved