login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Solutions to phi(n) = phi(sigma(n)) that are not given by Theorem 3 of Golomb's manuscript.
4

%I #32 May 25 2022 09:13:21

%S 1,3,15,45,175,357,585,608,646,962,1071,1292,1443,1508,1586,1664,1665,

%T 1898,2275,2295,2379,2745,2847,3285,3848,4082,4329,4514,4641,4736,

%U 4845,5018,5402,6123,6232,6344,6475,6771,7052,7065,7137,7202,7215,7527,7592,7803,7808,8103,8138,8398,8541,8685,8906,9344,9526,10322

%N Solutions to phi(n) = phi(sigma(n)) that are not given by Theorem 3 of Golomb's manuscript.

%D S. W. Golomb, Equality among number-theoretic functions, Manuscript, no date; Second update, Dec 29, 1992.

%H Antti Karttunen, <a href="/A260021/b260021.txt">Table of n, a(n) for n = 1..20000</a>

%H S. W. Golomb, <a href="/A006872/a006872_1.pdf">Equality among number-theoretic functions</a>, Unpublished manuscript. (Annotated scanned copy)

%H Antti Karttunen, <a href="/A260021/a260021.txt">Data supplement: n, a(n) computed for n = 1..103800</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F {k | 1==A353637(k) and 0==A354344(k)}. - _Antti Karttunen_, May 25 2022

%o (PARI)

%o A354344(n) = { if(!(n%15),n/=15,if(!(n%9),n/=9,if(!(n%8),n/=8,if(!(n%3),n/=3,if(!(n%2),n/=2,return(0)))))); ((n>5) && isprime(n) && isprime((1+n)/2)); };

%o A353637(n) = (eulerphi(sigma(n))==eulerphi(n));

%o isA260021(n) = (A353637(n) && !A354344(n)); \\ _Antti Karttunen_, May 24 2022

%Y Setwise difference A006872 \ A354345. Subset of positions of zeros in A353636.

%Y Cf. A354362 (subsequence).

%Y Cf. also A005383, A353637, A354344.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jul 14 2015

%E Term a(1) = 1 prepended and terms a(14) .. a(56) added by _Antti Karttunen_, May 24 2022