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Equality Among

Number—-Theoretic Functions A26002]

—Solomon W. Golomb

1 INTRODUCTION

The functions ¢(n) and o(n) of elementary number theory may be defined
=1

by ¢(1) = a(1) and for
n = I7pe
with n > 1,
é(n) = ILVpH " (pi — 1)
while

o(n) = I (! — 1)/ (pi — 1).
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k We will be interested in values of n > 1 for which two (or more) of the
- following five functions are equal:

n, é(n), o(n), #(o(n)) and o(¢(n)).
(At n =1, each of these has the value “17.)
For all n > 1 we know that ¢(n) < n < o(n). Hence also for n > 1,

#(o(n)) < o(n); and for n > 2, ¢(n) < o(P(n)).

The equations of interest are therefore:
1. ¢(a(
2. o(d(
3. ¢(n) = ¢(a(n))
4. o(n)
(o

5. ¢

all of which have solutions with n > 1.



2 The Equations ¢(cg(n)) =n and o(¢(n)) = n.

There is a natural one-to-one correspondence between the solutions of ¢(o(n))
n and those of o(¢(n)) = n, as a consequence of an extremely general theo-

IreIn.

Theorem 1. Let S and T be any two non-empty sets. Let f : S — T and
g : T — S be any functions from S into T and from T into S, respectively.

Let X = {z€5|g(f(z)) ==}
andlet Y = {yeT]| flg(y)) =y}

(Thus X C S and Y C T.) Then there is a one-to-one onto mapping

h: X &Y given by

h:X =Y byh:z— f(z) =y,
h_l:Y———).'X by A7t :y — g(y) =

Proof. Suppose zg is a solution of g(f(zo)) = zo. Then, setting f(zo) = yo,
we have f(g(yo)) = f(9(f(z0))) = f(zo) = yo. That is, whenever zg is left
fixed by gf, we find that yo = f(zo) is left fixed by fg.

Conversely, suppose y; is a solution of f(g(y:

zy, we have g(f(z1)) = g(f(g9(n1))) = 9(n) = =1.
left fixed by fg, then z, = g(y1) is left fixed by ¢f.

Examples:

1 From ¢(o(1)) =
o(¢(1)) = o(1) = 1.

—

8
a(¢(15)) = o(8) = 15.
i) From ¢(o(12)) = 4(28) =
a(¢(28)) = o(12) = 28.

In view of Theorem 1, each of these examples involves a pair of integers a, b,

#(1) =1, we have
( =
1)( From ¢(c(8)) = ¢(15) = 8, we have

12, we have

)) = yy. Then, setting g(yl) —

That is, whenever y; is

such that ¢(a) = b,0(b) = a. This is necessary and sufficient for o(¢(a)) =

a, $(o (b)) =



Theorem 2. Let k be any member of the set {1,2,4,8,16,32}. Then the pair
of integers ay = 25—1, b, = 257! satisfies the relations ¢(ax) = by, o(bi) = ax.
Hence, for these numbers, ¢(o(bi)) = bi, o(d(ar)) = ax.

Proof. For any exponent m,a(2™) = 2™+! — 1. Hence, with b, = 257!, we
have o(by) =2 — 1 = a;.

With a; = 2¥ — 1 where k € {1,2,4,8,16,32}, we see that a; factors into
distinct consecutive Fermat primes:

a; = 2'—1 = 1 (the empty product)

ag = 22 -1 = 3 = Fl

a4 = 24—1 = 3-5 :Fl'Fg

ag = 28—1 = 3-5-17 :FI'FQ'F;;

aig = 216—1 = 3-5-17-257 :Fl'Fg'F3'F4

asz2 = 232—1 = 351725765537 :Fl'Fz'Fg'F4'F5.

Thus we see that é(ax) = #(2F — 1) = 2571 for these six values of k. |
Notes.

1. Since Fg = 232 +1 = 641 - 6700417 is composite, there are no further
examples of this type.

2. The example ¢(28) = 12,0(12) = 28, mentioned earlier, shows that
there are instances of ¢(a) = b, o(b) = a, in addition to those given by
Theorem 2.

3 .The Equations ¢(n) = ¢(ag(n)) and o(n) =
o (¢(n)).

Since o(n) > n for all n > 1, it may seem surprising that ¢(n) =

#(o(n)) has many solutions. Specifically, each member of the sequence. @%}Z
(+)  1,3,15,26,39,45,74,104,111,117,122,146,183,195, . .. B

is a solution of ¢(n) = ¢(a(n)).

Many of the members of this sequence can be obtained from the fol-

lowing theorem.

Theorem 3. Suppose ¢ > 3 and p = 2¢ — 1 are both prime. Then
n=2p,n=3p,n=_8p,n=9p, and n = 15p all satisfy ¢(n) = ¢(c(n)).
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Proof. If n = 2p then ¢(n) = p — 1 =2(¢q — 1), while
¢(o(n)) =4(3-2-q) =2(¢—1).

If n = 3p then ¢(n) = 2(p — 1) = 4(¢ — 1), while
¢(o(n)) = ¢(4-2-q) =4(¢ - 1).

If n = 8p then ¢(n) =4(p — 1) = 8(¢ — 1), while
¢(a(n)) = $(15-2-¢) =8(q — 1).

If n = 9p then ¢(n) = 6(p — 1) = 12(q — 1), while
¢(o(n)) = ¢(13-2-¢) = 12(¢ - 1).

If n =15p then ¢(n) =8(p — 1) = 16(¢ — 1), while
¢(o(n)) = ¢(24-2-q) =16(q — 1).

Notes.

. The case ¢ = 3,p = 2¢ — 1 = 5 gives valid examples with n = 3p and
n = 9p,but fails at n = 2p and at n = 8p.

. The sequence of solutions of ¢(n) = ¢(o(n)) listed above, as far as it
extends, can be obtained from Theorem 3 and Note 3) above.

A more generalized result than Theorem 3 is the following.

Theorem 4. Let m be any positive integer which satisfies 2¢(m) =
#(20(m)). (The sequence of values of m with this property begins
2,3,8,9,15,26,39,45,74, ...and coincides with the sequence (*) except
where a term in either sequence is a square or twice a square, i.e. except
for terms m for which o(m) is odd, since otherwise ¢(m) = ¢(c(m))
holds if and only if ¢(20(m)) = 2¢(c(m)).) Let ¢ and p = 2¢ — 1
be odd primes. If p t m and (g,0(m)) = 1, then n = mp satisfies
#(n) = $(o(n)).

Proof. Suppose n = mp as in the statement above. Since p { m, we have
d(mp) = d(m)g(p) = ¢(m) - 2(¢ — 1), and o(mp) = o(m) - 2q. Since
(g,0(m)) = 1, we have ¢(a(mp)) = $(20(m)q) = d(20(m))é(g) =
26(m) - (q — 1) = $(mp).

All currently known examples of n > 1 which satisfy ¢(n) = ¢(o(n))
are instances of Theorem 4. It is conceivable that this is in fact the
general solution.

N
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The solutions of o(n) = o(¢(n)) seem to be far less numerous than
the solutions of ¢(n) = #(o(n)). In particular, for n < 200, the only
solutions are n = 1 and n = 87. It is likely that the example n = 87 is
part of a larger family of solutions.

4 The Equation ¢(o(n)) = a(¢(n)).

Theorem 5. The expression o(¢(n)) — #(o(n)) is both positive and neg-
ative infinitely often.

“Proof.”

1) If there are infinitely many Mersenne primes: suppose 2k — 1 is
prime, and let n = 2¥=*. Then o(4(n)) = o(252) = 251 — 1, while
$(o(n)) = $(2F — 1) = 2" — 2 = 20(g(n)).

2) Suppose p, q, and r are all odd primes, where p4+1 = 2g and p—1 =
12r. Let n = p. Then ¢(a(n)) = d(p+1) = ¢(2¢) = ¢—1 = 2%, while
o(¢(n)) = o(p—1) = o(12r) = 28(r +1) = 28(p + 11)/12 = Z(p+ 11).

Notes.

. Statistically, o(¢(n)) — ¢(a(n)) appears to be positive far more often
than negative. It would be interesting to determine the asymptotic
distribution of the set of n’s for which this difference is positive.

. For n < 200, the only instances of ¢(o(n)) = o(¢(n)) occur at n =1
and at n = 9. Are there other examples?
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Oscar Moreno has provided computer search data on solutions to the equa-
tions 1. to 5. as follows.

For equations 1. ¢(o(n)) = n and 2. o(¢(n)) = n, which have paired so-’

lutions by Theorem 1, and the specific solution pairs n = 2*~! for 1. and
n = 2% — 1 for 2., for each k € {1,2,4,8,16,32}, there are the following
additional solutions to 1. with n < 2% : n = 12;240; 720;6912. (The corre-
sponding solutions to 2. are n = 28; 744; 2418; 20440.)

The solutions to 4. o(¢(n)) = o(n) forn < 20,000 are: {1,87,362,1257,1798,

5002,9374.} Each of these values for n > 1 is either 2 or 3 times one or two
larger primes, but no predictable pattern has yet emerged.

The solutions to 5. ¢(o(n)) = o(¢(n)) for n < 20,000 are {1,9,225,242, 516,
729,3872,13932,14406,17672,18225}. We had observed in Theorem 6 that
n = 377! is a solution whenever (37 — 1)/2 is prime, which accounts for
{9,729,531441,37 3192}, The numerical data suggested:

Theorem 7. Whenever (37 — 1)/2 is prime, n = 25 - 377! satisfies 5.
Proof: ¢(25 -37~1) = 40 - 32 and o($(25 - 3¥-1)) = 15(37 — 3).
(25 - 37-1) = 31 - (37 — 1)/2 and $(o(25 - 3P~1)) = 15(37 — 3).

More generally,

Thecrem 8. If a satisfies o(2¢(a)) = 3¢(o(a)) with (ag(a),3) = 1, then
n = a- 377! satisfies 5. for all p for which (37 — 1)/2 is prime.

Several of the other solutions to 5. found by Moreno are twice perfect squares:
242 =2-112%; 3872 = 2 - 442 = 16 - 242; 17672 = 2 - 94%. A relation may also
exist between the solutions 516 = 12 - 43 and 13932 = 18% - 43 = 27 - 516.
Finally, 14406 = 6 - 7*.

For equation 3. ¢(n) = #(o(n)), Moreno found the following solutions n <
6000 which are not given by Theorem 3: {3, 15,45, 175,357,585, 608, 646,962,
1071,1292,1443,1508,1586,1664,1665,1898, 2275, 2295, 2379, 2745, 2847,
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3285, 3848,4082,4329,4514,4641,4736,4845,5018,5402}. Most, but not all,
of these are in fact given by Theorem 4. The value n = 175 is new, and by
Theorem 4 accounts also for n = 175 x 13 = 2275.

In addition to the “multipliers” 2, 3, 8, 9, and 15 of Theorem 3, we get a much
longer list from Theorem 4, which also includes 26, 39, 45, 74, 104, 111, 117,
122, 146, 183, 195, etc. Two additions to this list are 175 (any solution of 3.
which is neither a square nor twice a square will be a multiplier); and 128,
which is twice a square and is seen to satisfy the condition 2¢(m) = ¢(20(m))
of Theorem 4, although it is not itself a solution of 3. Note that both.
128 - 13 = 1664 and 128 - 37 = 4736 are entries in Moreno’s list. a

The multiplier 128 is from the set {2,8,128,32768,2147483648} of multipliers
of the form $(ax) where ax = 2¥ —1 with k € {2,4,8,16,32} as in the proof of
Theorem 2. (These numbers all satisfy 2¢(m) = ¢(20(m)) and are therefore
multipliers although none of them satisfies 3. Since each is twice a perfect
square, this does not violate Theorem 4.)

Beyond n = 175, new solutions to 3. from Moreno’s list include only
{357,608, 646,1071,1292, 1508, 2295,4641,4845}. The theory of the solutions
of 3. which is emerging consists of three sequences: the terms of the sequence
(i.e. the solutions of 3.); the generator sequence (including all p = 2¢ — 1
where p and ¢ are odd primes but containing other numbers as well); and
the multipliers (i.e. the numbers m with 2¢(m) = ¢(20(m))). The terms
of the sequence, in general, are the products of generators times multipliers,
subject to compatibility constraints. It is thus clear that 119 is a generator,
since Moreno’s list of terms includes 357 = 3 x 119, 1071 = 9 x 119, and
4641 = 39x119. (The compatibility requirements for multipliers m of 119 ap-
pear to be (¢(m),3) =1 and (m,119) = 1.) Another family is 646 = 2 x 323,
1292 = 4 x 323, and 4845 = 15 x 323. However, a modification of Theorem 4
to describe the multipliers of non-prime generators seems to be needed in this
case. The only terms on Moreno’s list still “unexplained” are 608 = 2° - 19,

1508 = 22-13-29, and 2295 = 3*- 5. 17.



