login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259414
Triangular numbers (A000217) that are the sum of thirteen consecutive triangular numbers.
6
2080, 414505, 28815436, 49317346, 3428789455, 698283666730, 48548229019381, 83089887991201, 5776831256176630, 1176469718198438755, 81794153348207147926, 139990009467226925656, 9732816854065394603605, 1982118534159467652450580, 137806953149317550935817071
OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1684802,-1684802,0,0,-1,1).
FORMULA
G.f.: -13*x*(7*x^8 +153*x^6 +31725*x^5 -9608927*x^4 +1577070*x^3 +2184687*x^2 +31725*x +160) / ((x -1)*(x^2 -36*x -1)*(x^2 +36*x -1)*(x^4 +1298*x^2 +1)).
EXAMPLE
2080 is in the sequence because T(64) = 2080 = 66 + 78 + 91 + 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 = T(11) + ... + T(23).
MATHEMATICA
LinearRecurrence[{1, 0, 0, 1684802, -1684802, 0, 0, -1, 1}, {2080, 414505, 28815436, 49317346, 3428789455, 698283666730, 48548229019381, 83089887991201, 5776831256176630}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
PROG
(PARI) Vec(-13*x*(7*x^8 +153*x^6 +31725*x^5 -9608927*x^4 +1577070*x^3 +2184687*x^2 +31725*x +160) / ((x -1)*(x^2 -36*x -1)*(x^2 +36*x -1)*(x^4 +1298*x^2 +1)) + O(x^20))
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jun 26 2015
STATUS
approved