|
|
A259415
|
|
Triangular numbers (A000217) that are the sum of seventeen consecutive triangular numbers.
|
|
6
|
|
|
1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130, 172110498456, 463127571831, 37515654714891, 100949879501796, 749369070309030, 2016457340944761, 163343152011830505, 439535752164830646, 3262752760014579156
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,4354,-4354,0,0,-1,1).
|
|
FORMULA
|
G.f.: -51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)).
|
|
EXAMPLE
|
1326 is in the sequence because T(51) = 1326 = 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136 + 153 + 171 + 190 = T(3) + ... + T(19).
|
|
MATHEMATICA
|
LinearRecurrence[{1, 0, 0, 4354, -4354, 0, 0, -1, 1}, {1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
|
|
PROG
|
(PARI) Vec(-51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)) + O(x^30))
|
|
CROSSREFS
|
Cf. A000217, A001110, A129803, A131557, A257711, A257712, A257713, A259413, A259414.
Sequence in context: A249080 A248984 A202374 * A015162 A075037 A134116
Adjacent sequences: A259412 A259413 A259414 * A259416 A259417 A259418
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Colin Barker, Jun 26 2015
|
|
STATUS
|
approved
|
|
|
|