Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #43 Sep 08 2022 08:45:06
%S 0,1,528,29646,524800,4884375,30236976,141246028,536887296,1743421725,
%T 5000050000,12968792826,30958806528,68929431571,144627596400,
%U 288325575000,549756338176,1007997660153,1785234558096,3065534366950,5120001600000,8339942531151
%N a(n) = (n^10 + n^5)/2.
%C Subset of A000217. - _Robert Israel_, Nov 20 2014
%C Number of unoriented rows of length 10 using up to n colors. For a(0)=0, there are no rows using no colors. For a(1)=1, there is one row using that one color for all positions. For a(2)=528, there are 2^10=1024 oriented arrangements of two colors. Of these, 2^5=32 are achiral. That leaves (1024-32)/2=496 chiral pairs. Adding achiral and chiral, we get 528. - _Robert A. Russell_, Nov 13 2018
%D T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
%H Vincenzo Librandi, <a href="/A071236/b071236.txt">Table of n, a(n) for n = 0..2000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).
%F a(0)=0, a(1)=1, a(2)=528, a(3)=29646, a(4)=524800, a(5)=4884375, a(6)=30236976, a(7)=141246028, a(8)=536887296, a(9)=1743421725, a(10)=5000050000, a(n)= 11*a(n-1)- 55*a(n-2)+165*a(n-3)-330*a(n-4)+462*a(n-5)-462*a(n-6)+330*a(n-7)-165*a(n-8)+ 55*a(n-9)- 11*a(n-10)+a(n-11). - _Harvey P. Dale_, Jul 24 2012
%F From _Robert Israel_, Nov 19 2014: (Start)
%F a(n) = (A008454(n) + A000584(n))/2 = n^5*(n+1)*(n^4 -n^3 +n^2 -n +1)/2.
%F G.f.: x*(1 +517*x +23893*x^2 +227569*x^3 +655315*x^4 +655039*x^5 +227623*x^6 +23947*x^7 +496*x^8)/(1-x)^11. (End)
%F From _Robert A. Russell_, Nov 13 2018: (Start)
%F G.f.: (Sum_{j=1..10} S2(10,j)*j!*x^j/(1-x)^(j+1) + Sum_{j=1..5} S2(5,j)*j!*x^j/(1-x)^(j+1)) / 2, where S2 is the Stirling subset number A008277.
%F G.f.: x*Sum_{k=0..9} A145882(10,k) * x^k / (1-x)^11.
%F E.g.f.: (Sum_{k=1..10} S2(10,k)*x^k + Sum_{k=1..5} S2(5,k)*x^k) * exp(x) / 2, where S2 is the Stirling subset number A008277.
%F For n > 10, a(n) = Sum_{j=1..11} -binomial(j-12,j) * a(n-j). (End)
%F E.g.f.: x*(2 + 526*x + 9355*x^2 + 34115 x^3 + 42526*x^4 + 22827*x^5 + 5880*x^6 + 750*x^7 + 45*x^8 + x^9)*exp(x)/2. - _G. C. Greubel_, Nov 15 2018
%p seq((n^10 + n^5)/2, n=0..100); # _Robert Israel_, Nov 19 2014
%t Table[n^5(n+1)(n^4-n^3+n^2-n+1)/2,{n,0,30}] (* or *) LinearRecurrence[{11, -55, 165, -330,462,-462,330,-165,55,-11,1},{0, 1, 528,29646,524800,4884375, 30236976,141246028,536887296, 1743421725, 5000050000}, 30](* _Harvey P. Dale_, Jul 24 2012 *)
%o (Magma) [n^5*(n+1)*(n^4-n^3+n^2-n+1)/2: n in [0..40]]; // _Vincenzo Librandi_, Jun 14 2011
%o (PARI) a(n)=binomial(n^5+1,2) \\ _Charles R Greathouse IV_, Nov 19 2014
%o (Sage) [n^5*(1 + n^5)/2 for n in range(40)] # _G. C. Greubel_, Nov 15 2018
%o (GAP) List([0..40], n -> n^5*(1 + n^5)/2); # _G. C. Greubel_, Nov 15 2018
%Y Cf. A000217.
%Y Row 10 of A277504.
%Y Cf. A008454 (oriented), A000584 (achiral).
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Jun 12 2002
%E Definition simplified by _Robert Israel_, Nov 19 2014