login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105450
a(n) = binomial(n+5,6) + binomial(n+3,3) + binomial(n+2,3) + binomial(n-1,1).
4
0, 6, 22, 60, 142, 305, 607, 1134, 2008, 3396, 5520, 8668, 13206, 19591, 28385, 40270, 56064, 76738, 103434, 137484, 180430, 234045, 300355, 381662, 480568, 600000, 743236, 913932, 1116150, 1354387, 1633605, 1959262, 2337344, 2774398, 3277566, 3854620
OFFSET
0,2
COMMENTS
Number of directed column-convex polyominoes with perimeter 2(n+4) having n cells in the foundational column.
A051743 and this sequence form successive diagonals in an array that has as row sums the sequence A006027.
FORMULA
a(0)=0, a(1)=6, a(2)=22, a(3)=60, a(4)=142, a(5)=305, a(6)= 607, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Jun 28 2011
G.f.: (2*x^6-11*x^5+26*x^4-32*x^3+20*x^2-6*x)/(x-1)^7. - Harvey P. Dale, Jun 28 2011
MATHEMATICA
Table[Binomial[n+5, 6]+Binomial[n+3, 3]+Binomial[n+2, 3]+ Binomial[n-1, 1], {n, 0, 50}] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 6, 22, 60, 142, 305, 607}, 51] (* Harvey P. Dale, Jun 28 2011 *)
PROG
(PARI) a(n)=n*(n^5+15*n^4+85*n^3+465*n^2+1354*n+2400)/720 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Sequence in context: A320243 A066188 A071239 * A011888 A081282 A001769
KEYWORD
nonn,easy
AUTHOR
D. G. Rogers, May 07 2005
STATUS
approved