login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071244
a(n) = n*(n-1)*(n^2 + 2)/6.
5
0, 0, 2, 11, 36, 90, 190, 357, 616, 996, 1530, 2255, 3212, 4446, 6006, 7945, 10320, 13192, 16626, 20691, 25460, 31010, 37422, 44781, 53176, 62700, 73450, 85527, 99036, 114086, 130790, 149265, 169632, 192016, 216546, 243355, 272580, 304362, 338846, 376181
OFFSET
0,3
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4, a(0)=0, a(1)=0, a(2)=2, a(3)=11, a(4)=36. - Yosu Yurramendi, Sep 03 2013
From G. C. Greubel, Aug 06 2024: (Start)
G.f.: x^2*(2 + x + x^2)/(1 - x)^5.
E.g.f.: (1/6)*x^2*(6 + 5*x + x^2)*exp(x). (End)
MATHEMATICA
Table[n(n-1)(n^2+2)/6, {n, 0, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 2, 11, 36}, 50] (* Harvey P. Dale, Nov 27 2022 *)
PROG
(Magma) [n*(n-1)*(n^2+2)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(PARI) a(n)=n*(n-1)*(n^2+2)/6; \\ Joerg Arndt, Sep 04 2013
(SageMath)
def A071244(n): return binomial(n, 2)*(n^2+2)//3
[A071244(n) for n in range(41)] # G. C. Greubel, Aug 06 2024
CROSSREFS
Cf. A071239.
Sequence in context: A184538 A316322 A238706 * A005583 A375500 A176916
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved