Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Aug 07 2024 01:14:09
%S 0,0,2,11,36,90,190,357,616,996,1530,2255,3212,4446,6006,7945,10320,
%T 13192,16626,20691,25460,31010,37422,44781,53176,62700,73450,85527,
%U 99036,114086,130790,149265,169632,192016,216546,243355,272580,304362,338846,376181
%N a(n) = n*(n-1)*(n^2 + 2)/6.
%D T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
%H Vincenzo Librandi, <a href="/A071244/b071244.txt">Table of n, a(n) for n = 0..2000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4, a(0)=0, a(1)=0, a(2)=2, a(3)=11, a(4)=36. - _Yosu Yurramendi_, Sep 03 2013
%F From _G. C. Greubel_, Aug 06 2024: (Start)
%F G.f.: x^2*(2 + x + x^2)/(1 - x)^5.
%F E.g.f.: (1/6)*x^2*(6 + 5*x + x^2)*exp(x). (End)
%t Table[n(n-1)(n^2+2)/6,{n,0,50}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,0,2,11,36},50] (* _Harvey P. Dale_, Nov 27 2022 *)
%o (Magma) [n*(n-1)*(n^2+2)/6: n in [0..40]]; // _Vincenzo Librandi_, Jun 14 2011
%o (PARI) a(n)=n*(n-1)*(n^2+2)/6; \\ _Joerg Arndt_, Sep 04 2013
%o (SageMath)
%o def A071244(n): return binomial(n,2)*(n^2+2)//3
%o [A071244(n) for n in range(41)] # _G. C. Greubel_, Aug 06 2024
%Y Cf. A071239.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Jun 12 2002