login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238706
Sum of the smallest parts of the partitions of 4n into 4 parts with smallest part greater than 1.
10
0, 2, 11, 36, 89, 183, 335, 565, 894, 1347, 1952, 2738, 3738, 4988, 6525, 8390, 10627, 13281, 16401, 20039, 24248, 29085, 34610, 40884, 47972, 55942, 64863, 74808, 85853, 98075, 111555, 126377, 142626, 160391, 179764, 200838, 223710, 248480, 275249, 304122
OFFSET
1,2
FORMULA
G.f.: x^2*(x-2)*(x+1)*(2*x^2+x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Mar 23 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7) for n > 7. - Wesley Ivan Hurt, Oct 07 2017
EXAMPLE
Add the numbers > 1 in the last column for a(n):
13 + 1 + 1 + 1
12 + 2 + 1 + 1
11 + 3 + 1 + 1
10 + 4 + 1 + 1
9 + 5 + 1 + 1
8 + 6 + 1 + 1
7 + 7 + 1 + 1
11 + 2 + 2 + 1
10 + 3 + 2 + 1
9 + 4 + 2 + 1
8 + 5 + 2 + 1
7 + 6 + 2 + 1
9 + 3 + 3 + 1
8 + 4 + 3 + 1
7 + 5 + 3 + 1
6 + 6 + 3 + 1
7 + 4 + 4 + 1
6 + 5 + 4 + 1
5 + 5 + 5 + 1
9 + 1 + 1 + 1 10 + 2 + 2 + 2
8 + 2 + 1 + 1 9 + 3 + 2 + 2
7 + 3 + 1 + 1 8 + 4 + 2 + 2
6 + 4 + 1 + 1 7 + 5 + 2 + 2
5 + 5 + 1 + 1 6 + 6 + 2 + 2
7 + 2 + 2 + 1 8 + 3 + 3 + 2
6 + 3 + 2 + 1 7 + 4 + 3 + 2
5 + 4 + 2 + 1 6 + 5 + 3 + 2
5 + 3 + 3 + 1 6 + 4 + 4 + 2
4 + 4 + 3 + 1 5 + 5 + 4 + 2
5 + 1 + 1 + 1 6 + 2 + 2 + 2 7 + 3 + 3 + 3
4 + 2 + 1 + 1 5 + 3 + 2 + 2 6 + 4 + 3 + 3
3 + 3 + 1 + 1 4 + 4 + 2 + 2 5 + 5 + 3 + 3
3 + 2 + 2 + 1 4 + 3 + 3 + 2 5 + 4 + 4 + 3
1 + 1 + 1 + 1 2 + 2 + 2 + 2 3 + 3 + 3 + 3 4 + 4 + 4 + 4
4(1) 4(2) 4(3) 4(4) .. 4n
------------------------------------------------------------------------
0 2 11 36 .. a(n)
MATHEMATICA
a[1] = 4; a[n_] := (n/(n - 1))*a[n - 1] + 4 n*Sum[(Floor[(4 n - 2 - i)/2] - i)*(Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; b[n_] := a[n]/(4 n); b[0] = 0; c[1] = 1; c[n_] := b[n] + c[n - 1]; Table[c[n] - (b[n] - b[n - 1]), {n, 50}]
CoefficientList[Series[x (x - 2) (x + 1) (2 x^2 + x + 1)/((x - 1)^5 (x^2 + x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
Table[Total[Select[IntegerPartitions[4n, {4}], #[[-1]]>1&][[All, -1]]], {n, 40}] (* or *) LinearRecurrence[{4, -6, 5, -5, 6, -4, 1}, {0, 2, 11, 36, 89, 183, 335}, 40] (* Harvey P. Dale, Jan 06 2023 *)
PROG
(PARI) concat(0, Vec(x^2*(x-2)*(x+1)*(2*x^2+x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Mar 23 2014
(Magma) I:=[0, 2, 11, 36, 89, 183, 335]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved