The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A238328 Sum of all the parts in the partitions of 4n into 4 parts. 19
 4, 40, 180, 544, 1280, 2592, 4732, 7968, 12636, 19120, 27808, 39168, 53716, 71960, 94500, 121984, 155040, 194400, 240844, 295120, 358092, 430672, 513728, 608256, 715300, 835848, 971028, 1122016, 1289920, 1476000, 1681564, 1907840, 2156220, 2428144, 2724960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 A. Osorio, A Sequential Allocation Problem: The Asymptotic Distribution of Resources, Munich Personal RePEc Archive, 2014. Index entries for linear recurrences with constant coefficients, signature (3,-3,3,-6,6,-3,3,-3,1). FORMULA Recurrence: a(1) = 4, with a(n) = (n/(n-1))*a(n-1) + 4n*Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * floor((sign(floor((4n-2-i)/2)-i)+2)/2), n > 1. G.f.: 4*x*(4*x^6+15*x^5+23*x^4+28*x^3+18*x^2+7*x+1) / ((1-x)^5*(x^2+x+1)^2). - Colin Barker, Mar 10 2014 a(n) = 16/9*n^4 + 4/3*n^3 + O(n). - Ralf Stephan, May 29 2014 a(n) = 4n*(A238702(n) - A238702(n-1)), n > 1. - Wesley Ivan Hurt, May 29 2014 a(n) = 4n * A238340(n). - Wesley Ivan Hurt, May 29 2014 EXAMPLE 13 + 1 + 1 + 1                                              12 + 2 + 1 + 1                                              11 + 3 + 1 + 1                                              10 + 4 + 1 + 1                                               9 + 5 + 1 + 1                                               8 + 6 + 1 + 1                                               7 + 7 + 1 + 1                                              11 + 2 + 2 + 1                                              10 + 3 + 2 + 1                                               9 + 4 + 2 + 1                                               8 + 5 + 2 + 1                                               7 + 6 + 2 + 1                                               9 + 3 + 3 + 1                                               8 + 4 + 3 + 1                                               7 + 5 + 3 + 1                                               6 + 6 + 3 + 1                                               7 + 4 + 4 + 1                                               6 + 5 + 4 + 1                                               5 + 5 + 5 + 1                               9 + 1 + 1 + 1  10 + 2 + 2 + 2                               8 + 2 + 1 + 1   9 + 3 + 2 + 2                               7 + 3 + 1 + 1   8 + 4 + 2 + 2                               6 + 4 + 1 + 1   7 + 5 + 2 + 2                               5 + 5 + 1 + 1   6 + 6 + 2 + 2                               7 + 2 + 2 + 1   8 + 3 + 3 + 2                               6 + 3 + 2 + 1   7 + 4 + 3 + 2                               5 + 4 + 2 + 1   6 + 5 + 3 + 2                               5 + 3 + 3 + 1   6 + 4 + 4 + 2                               4 + 4 + 3 + 1   5 + 5 + 4 + 2                5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3                4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3                3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3                3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3 1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4     4(1)            4(2)           4(3)            4(4)       ..   4n ------------------------------------------------------------------------      4               40            180             544        ..   a(n) MATHEMATICA CoefficientList[Series[4*(4*x^6 + 15*x^5 + 23*x^4 + 28*x^3 + 18*x^2 + 7*x + 1)/((1 - x)^5*(x^2 + x + 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 27 2014 *) LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {4, 40, 180, 544, 1280, 2592, 4732, 7968, 12636}, 50] (* Vincenzo Librandi, Aug 29 2015 *) PROG (PARI) Vec(-4*x*(4*x^6+15*x^5+23*x^4+28*x^3+18*x^2+7*x+1)/((x-1)^5*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Mar 24 2014 (MAGMA) I:=[4, 40, 180, 544, 1280, 2592, 4732, 7968, 12636]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..45]]; // Vincenzo Librandi, Aug 29 2015 CROSSREFS Cf. A235988, A238340. Sequence in context: A224086 A271013 A163322 * A009355 A061132 A215717 Adjacent sequences:  A238325 A238326 A238327 * A238329 A238330 A238331 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt and Antonio Osorio, Feb 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 19:27 EDT 2021. Contains 347651 sequences. (Running on oeis4.)