login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071245
a(n) = n*(n-1)*(2*n^2 + 1)/6.
4
0, 0, 3, 19, 66, 170, 365, 693, 1204, 1956, 3015, 4455, 6358, 8814, 11921, 15785, 20520, 26248, 33099, 41211, 50730, 61810, 74613, 89309, 106076, 125100, 146575, 170703, 197694, 227766, 261145, 298065, 338768, 383504, 432531, 486115, 544530, 608058
OFFSET
0,3
COMMENTS
The first differences are given in A277228. - J. M. Bergot, Sep 14 2016
REFERENCES
T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.
FORMULA
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4; a(0)=0, a(1)=0, a(2)=3, a(3)=19, a(4)=66. - Yosu Yurramendi, Sep 03 2013
G.f.: x^2*(3 + 4*x + x^2)/(1-x)^5. - Michael De Vlieger, Sep 14 2016
E.g.f.: (1/6)*x^2*(9 + 10*x + 2*x^2)*exp(x). - G. C. Greubel, Sep 23 2016
MATHEMATICA
Table[n (n - 1) (2 n^2 + 1)/6, {n, 0, 37}] (* or *)
CoefficientList[Series[(-3 x^2 - 4 x^3 - x^4)/(-1 + x)^5, {x, 0, 37}], x] (* Michael De Vlieger, Sep 14 2016 *)
PROG
(Magma) [n*(n-1)*(2*n^2+1)/6: n in [0..40]]; // Vincenzo Librandi, Jun 14 2011
(PARI) a(n)=n*(n-1)*(2*n^2+1)/6; \\ Joerg Arndt, Sep 04 2013
(SageMath)
def A071245(n): return binomial(n, 2)*(2*n^2+1)//3
[A071245(n) for n in range(41)] # G. C. Greubel, Aug 07 2024
CROSSREFS
Cf. A071238, A071244, A277228 (first differences).
Sequence in context: A316601 A341263 A178747 * A297744 A091968 A351859
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 12 2002
STATUS
approved