OFFSET
0,5
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(add(
-d, d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, g(n+1),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> b(n$2):
seq(a(n), n=0..31); # Alois P. Heinz, Feb 07 2021
MATHEMATICA
Table[SeriesCoefficient[(-1 + QPochhammer[x, x])^n, {x, 0, 2 n}], {n, 0, 31}]
A[n_, k_] := A[n, k] = If[n == 0, 1, -k Sum[A[n - j, k] DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];
Table[T[2 n, n], {n, 0, 31}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Feb 07 2021
STATUS
approved