login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324595
Number of colored integer partitions of 2n such that all colors from an n-set are used and parts differ by size or by color.
7
1, 1, 5, 19, 85, 381, 1751, 8135, 38173, 180415, 857695, 4096830, 19645975, 94523729, 456079769, 2206005414, 10693086637, 51930129399, 252617434619, 1230714593340, 6003931991895, 29325290391416, 143393190367102, 701862880794183, 3438561265961263
OFFSET
0,3
FORMULA
a(n) = A308680(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 5.0032778445310926321307990027... and c = 0.2798596129161126875318997... - Vaclav Kotesovec, Sep 14 2019
a(n) = [x^(2n)] (-1 + Product_{j>=1} (1 + x^j))^n. - Alois P. Heinz, Jan 29 2021
EXAMPLE
a(2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->
b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))
end:
a:= n-> add(b(2*n$2, n-i)*(-1)^i*binomial(n, i), i=0..n):
seq(a(n), n=0..25);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n+1),
(q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))
end:
a:= n-> g(n$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 29 2021
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k] Binomial[k, j]][n - i j], {j, 0, Min[k, n/i]}]]];
a[n_] := Sum[b[2n, 2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}];
a /@ Range[0, 25] (* Jean-François Alcover, May 06 2020, after Maple *)
Table[SeriesCoefficient[(-1 + QPochhammer[-1, Sqrt[x]]/2)^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Jan 15 2024 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{2 + 2*s == QPochhammer[-1, Sqrt[r*s]], Sqrt[r]*Derivative[0, 1][QPochhammer][-1, Sqrt[r*s]] == 4*Sqrt[s]}, {r, 1/5}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Jan 15 2024 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 03 2019
STATUS
approved