login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of colored integer partitions of 2n such that all colors from an n-set are used and parts differ by size or by color.
7

%I #32 Jan 15 2024 12:34:00

%S 1,1,5,19,85,381,1751,8135,38173,180415,857695,4096830,19645975,

%T 94523729,456079769,2206005414,10693086637,51930129399,252617434619,

%U 1230714593340,6003931991895,29325290391416,143393190367102,701862880794183,3438561265961263

%N Number of colored integer partitions of 2n such that all colors from an n-set are used and parts differ by size or by color.

%H Alois P. Heinz, <a href="/A324595/b324595.txt">Table of n, a(n) for n = 0..1433</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%F a(n) = A308680(2n,n).

%F a(n) ~ c * d^n / sqrt(n), where d = 5.0032778445310926321307990027... and c = 0.2798596129161126875318997... - _Vaclav Kotesovec_, Sep 14 2019

%F a(n) = [x^(2n)] (-1 + Product_{j>=1} (1 + x^j))^n. - _Alois P. Heinz_, Jan 29 2021

%e a(2) = 5: 2a1a1b, 2b1a1b, 2a2b, 3a1b, 3b1a.

%p b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add((t->

%p b(t, min(t, i-1), k)*binomial(k, j))(n-i*j), j=0..min(k, n/i))))

%p end:

%p a:= n-> add(b(2*n$2, n-i)*(-1)^i*binomial(n, i), i=0..n):

%p seq(a(n), n=0..25);

%p # second Maple program:

%p b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(

%p `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)

%p end:

%p g:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, b(n+1),

%p (q-> add(g(j, q)*g(n-j, k-q), j=0..n))(iquo(k, 2))))

%p end:

%p a:= n-> g(n$2):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Jan 29 2021

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[Function[t, b[t, Min[t, i - 1], k] Binomial[k, j]][n - i j], {j, 0, Min[k, n/i]}]]];

%t a[n_] := Sum[b[2n, 2n, n - i] (-1)^i Binomial[n, i], {i, 0, n}];

%t a /@ Range[0, 25] (* _Jean-François Alcover_, May 06 2020, after Maple *)

%t Table[SeriesCoefficient[(-1 + QPochhammer[-1, Sqrt[x]]/2)^n, {x, 0, n}], {n, 0, 25}] (* _Vaclav Kotesovec_, Jan 15 2024 *)

%t (* Calculation of constant d: *) 1/r /. FindRoot[{2 + 2*s == QPochhammer[-1, Sqrt[r*s]], Sqrt[r]*Derivative[0, 1][QPochhammer][-1, Sqrt[r*s]] == 4*Sqrt[s]}, {r, 1/5}, {s, 1}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Jan 15 2024 *)

%Y Cf. A000009, A270913, A308680, A340987.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Sep 03 2019