login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 - x^k))^n.
1

%I #9 Feb 07 2021 18:38:36

%S 1,-1,1,-1,-3,19,-65,181,-419,755,-749,-1530,12255,-47477,141065,

%T -343526,660941,-770917,-911369,9721976,-40135713,124134772,

%U -313463842,631382751,-824406065,-492101356,8192253811,-35948431288,115087580857,-299576625051,627027769120,-894734468883

%N Coefficient of x^(2*n) in (-1 + Product_{k>=1} (1 - x^k))^n.

%p g:= proc(n) option remember; `if`(n=0, 1, add(add(

%p -d, d=numtheory[divisors](j))*g(n-j), j=1..n)/n)

%p end:

%p b:= proc(n, k) option remember; `if`(k=0, 1, `if`(k=1, g(n+1),

%p (q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2))))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..31); # _Alois P. Heinz_, Feb 07 2021

%t Table[SeriesCoefficient[(-1 + QPochhammer[x, x])^n, {x, 0, 2 n}], {n, 0, 31}]

%t A[n_, k_] := A[n, k] = If[n == 0, 1, -k Sum[A[n - j, k] DivisorSigma[1, j], {j, 1, n}]/n]; T[n_, k_] := Sum[(-1)^i Binomial[k, i] A[n, k - i], {i, 0, k}];

%t Table[T[2 n, n], {n, 0, 31}]

%Y Cf. A001482, A001483, A001484, A001485, A001486, A001487, A001488, A008705, A010815, A047654, A047655, A324595, A340987, A341265.

%K sign

%O 0,5

%A _Ilya Gutkovskiy_, Feb 07 2021