OFFSET
0,3
COMMENTS
The twice left-shifted tribonacci sequence begins: 1, 1, 2, 4, 7, 13, 24, ... .
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1323
FORMULA
a(n) = [x^n] (1/(1-x-x^2-x^3))^n.
MAPLE
a:= n-> coeff(series((1/(1-x-x^2-x^3))^n, x, n+1), x, n):
seq(a(n), n=0..25);
# second Maple program:
g:= proc(n) g(n):= `if`(n<2, (n+1)*(2-n)/2, add(g(n-j), j=1..3)) end:
b:= proc(n, k) option remember; `if`(k<2, g(n),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 07 2021
STATUS
approved