login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341266
a(n) is the n-th term of the n-fold self-convolution of the twice left-shifted tribonacci sequence (A000073).
1
1, 1, 5, 25, 125, 646, 3395, 18054, 96885, 523600, 2845700, 15537457, 85160387, 468279280, 2582140370, 14272523740, 79056303957, 438711518556, 2438587839980, 13574970187300, 75668677723100, 422294150816010, 2359326605275755, 13194525668986350, 73857744668632275
OFFSET
0,3
COMMENTS
The twice left-shifted tribonacci sequence begins: 1, 1, 2, 4, 7, 13, 24, ... .
LINKS
FORMULA
a(n) = [x^n] (1/(1-x-x^2-x^3))^n.
MAPLE
a:= n-> coeff(series((1/(1-x-x^2-x^3))^n, x, n+1), x, n):
seq(a(n), n=0..25);
# second Maple program:
g:= proc(n) g(n):= `if`(n<2, (n+1)*(2-n)/2, add(g(n-j), j=1..3)) end:
b:= proc(n, k) option remember; `if`(k<2, g(n),
(q-> add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..25);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 07 2021
STATUS
approved