The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A341267 Gaps between first elements of quadruple primes of the form {p, p+2, p+6, p+12). 1
 6, 6, 24, 60, 126, 120, 294, 450, 186, 150, 54, 6, 120, 1080, 840, 390, 84, 126, 510, 150, 144, 3300, 1230, 870, 1446, 330, 1794, 726, 1434, 3360, 1326, 264, 546, 714, 1470, 1836, 1104, 30, 1026, 204, 336, 744, 2226, 810, 240, 1050, 270, 1914, 60, 876, 1980 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes in the quadruple need not be sequential primes. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 James S. DeArmon, Perl program Eric Weisstein's World of Mathematics, Prime Triplet FORMULA a(n) = A172454(n+1) - A172454(n). EXAMPLE The first 6 quadruples are (5,7,11,17), (11,13,17,23), (17,19,23,29), (41,43,47,53), (101,103,107,113), (227,229,233,239), so the first 5 terms of the sequence are 11-5=6, 17-11=6, 41-17=24, 101-41=60, 227-101=126. MAPLE b:= proc(n) option remember; local p; p:= `if`(n=1, 1, b(n-1));       do p:= nextprime(p);          if andmap(isprime, [p+2, p+6, p+12]) then return p fi       od     end: a:= n-> b(n+1)-b(n): seq(a(n), n=1..65);  # Alois P. Heinz, Feb 14 2021 MATHEMATICA Differences[Select[Prime[Range[5000]], AllTrue[#+{2, 6, 12}, PrimeQ]&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 21 2021 *) PROG (Perl) See links. CROSSREFS Cf. A172454. Sequence in context: A267710 A306896 A087236 * A219910 A334569 A077193 Adjacent sequences:  A341264 A341265 A341266 * A341268 A341269 A341270 KEYWORD nonn AUTHOR James S. DeArmon, Feb 07 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 20:28 EST 2022. Contains 350480 sequences. (Running on oeis4.)