login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341267
Gaps between first elements of quadruple primes of the form {p, p+2, p+6, p+12}.
2
6, 6, 24, 60, 126, 120, 294, 450, 186, 150, 54, 6, 120, 1080, 840, 390, 84, 126, 510, 150, 144, 3300, 1230, 870, 1446, 330, 1794, 726, 1434, 3360, 1326, 264, 546, 714, 1470, 1836, 1104, 30, 1026, 204, 336, 744, 2226, 810, 240, 1050, 270, 1914, 60, 876, 1980
OFFSET
1,1
COMMENTS
Primes in the quadruple need not be sequential primes.
LINKS
James S. DeArmon, Perl program
Eric Weisstein's World of Mathematics, Prime Triplet
FORMULA
a(n) = A172454(n+1) - A172454(n).
EXAMPLE
The first 6 quadruples are (5,7,11,17), (11,13,17,23), (17,19,23,29), (41,43,47,53), (101,103,107,113), (227,229,233,239), so the first 5 terms of the sequence are 11-5=6, 17-11=6, 41-17=24, 101-41=60, 227-101=126.
MAPLE
b:= proc(n) option remember; local p; p:= `if`(n=1, 1, b(n-1));
do p:= nextprime(p);
if andmap(isprime, [p+2, p+6, p+12]) then return p fi
od
end:
a:= n-> b(n+1)-b(n):
seq(a(n), n=1..65); # Alois P. Heinz, Feb 14 2021
MATHEMATICA
Differences[Select[Prime[Range[5000]], AllTrue[#+{2, 6, 12}, PrimeQ]&]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 21 2021 *)
PROG
(Perl) See links.
CROSSREFS
Cf. A172454.
Sequence in context: A267710 A306896 A087236 * A219910 A334569 A077193
KEYWORD
nonn
AUTHOR
James S. DeArmon, Feb 07 2021
STATUS
approved