login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228706
Expansion of (1 - 3*x + 5*x^2 - 3*x^3 + x^4)/((1-x)^4*(1+x^2)^2).
3
1, 1, 1, 5, 11, 14, 18, 30, 45, 55, 67, 91, 119, 140, 164, 204, 249, 285, 325, 385, 451, 506, 566, 650, 741, 819, 903, 1015, 1135, 1240, 1352, 1496, 1649, 1785, 1929, 2109, 2299, 2470, 2650, 2870, 3101, 3311, 3531, 3795, 4071, 4324, 4588, 4900, 5225, 5525
OFFSET
0,4
COMMENTS
A159914 and A228705 both satisfy the same recurrence relation, and both count (n-3)-element subsets of {1..n} having even resp. odd sum. Is there a similar subset-counting interpretation for this sequence? - M. F. Hasler, Jun 22 2018
LINKS
E. Kirkman, J. Kuzmanovich and J. J. Zhang, Invariants of (-1)-Skew Polynomial Rings under Permutation Representations, arXiv preprint arXiv:1305.3973 [math.RA], 2013. See Example 5.6.
FORMULA
a(n) = (n+2)*(2*(n+1)*(n+3)+9*(1+(-1)^n)*i^(n*(n+1)))/48, where i=sqrt(-1). [Bruno Berselli, Sep 07 2013]
MATHEMATICA
CoefficientList[Series[(1 - 3 x + 5 x^2 - 3 x^3 + x^4) / ((1 - x)^4 (1 + x^2)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Sep 07 2013 *)
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1+x^2)^2)); // Vincenzo Librandi, Sep 07 2013
(PARI) Vec((1-3*x+5*x^2-3*x^3+x^4)/((1-x)^4*(1+x^2)^2)+O(x^99)) \\ M. F. Hasler, Jun 22 2018
CROSSREFS
Sequence in context: A297251 A293834 A313994 * A313995 A313996 A313997
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 06 2013
STATUS
approved