login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174003
Primes q with q^3 = 2+3*p for a prime p.
1
2, 5, 11, 17, 41, 47, 89, 101, 107, 239, 311, 347, 431, 479, 521, 641, 701, 719, 761, 839, 881, 941, 947, 1031, 1049, 1301, 1319, 1361, 1499, 1559, 1571, 1667, 1721, 1871, 1931, 2459, 2621, 2687, 2777, 2837, 2861, 2879, 2939, 3347, 3389, 3467, 3539, 3617, 3671, 3917
OFFSET
1,1
COMMENTS
q^3 = prime(1) + prime(2) * p.
A subsequence of A003627.
REFERENCES
Wolfgang M. Schmidt, Diophantine approximations and Diophantine equations. Lecture Notes in Mathematics, Springer-Verlag, 2000
LINKS
EXAMPLE
2^3 = 2 + 3 * 2, 2 = prime(1) gives q(1) = 2 = prime(1).
5^3 = 2 + 3 * 41, 41 = prime(13) gives q(2) = 5 = prime(3).
11^3 = 2 + 3 * 443, 443 = prime(86) gives q(3) = 11 = prime(5).
MATHEMATICA
Select[Prime[Range[600]], PrimeQ[(#^3-2)/3]&] (* Harvey P. Dale, Jul 22 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 05 2010
EXTENSIONS
Typo in a(11) corrected, keyword:base removed - R. J. Mathar, Mar 18 2010
STATUS
approved