login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174004
A triangle based on:a(n,q)=a(n-1,q)+q*a(n-2,q);t(n,q)=If[n == 0, 1, Sum[Binomial[n, k]*a(k, q), {k, 1, n, 2}]]
0
1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 12, 6, 2, 1, 1, 30, 16, 7, 2, 1, 1, 76, 46, 20, 8, 2, 1, 1, 195, 132, 64, 24, 9, 2, 1, 1, 504, 386, 200, 84, 28, 10, 2, 1, 1, 1309, 1136, 643, 280, 106, 32, 11, 2, 1, 1
OFFSET
0,4
COMMENTS
Row sums are:
{1, 2, 4, 9, 22, 57, 154, 428, 1216, 3521,...}.
FORMULA
a(n,q)=a(n-1,q)+q*a(n-2,q);
t(n,q)=If[n == 0, 1, Sum[Binomial[n, k]*a(k, q), {k, 1, n, 2}]]
EXAMPLE
{1},
{1, 1},
{2, 1, 1},
{5, 2, 1, 1},
{12, 6, 2, 1, 1},
{30, 16, 7, 2, 1, 1},
{76, 46, 20, 8, 2, 1, 1},
{195, 132, 64, 24, 9, 2, 1, 1},
{504, 386, 200, 84, 28, 10, 2, 1, 1},
{1309, 1136, 643, 280, 106, 32, 11, 2, 1, 1}
MATHEMATICA
Clear[t, n, q, a];
f[0, a_] := 0; f[1, a_] := 1;
f[n_, a_] := f[n, a] = f[n - 1, a] + a*f[n - 2, a];
t[n_, q_] = If[n == 0, 1, Sum[Binomial[n, k]*f[k, q], {k, 1, n, 2}]];
a = Table[Table[t[n, q], {n, 0, 10}], {q, 1, 11}];
Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
CROSSREFS
Sequence in context: A179318 A162470 A343234 * A128604 A098885 A106270
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Mar 05 2010
STATUS
approved