|
|
A060099
|
|
G.f.: 1/((1-x^2)^3*(1-x)^4).
|
|
8
|
|
|
1, 4, 13, 32, 71, 140, 259, 448, 742, 1176, 1806, 2688, 3906, 5544, 7722, 10560, 14223, 18876, 24739, 32032, 41041, 52052, 65429, 81536, 100828, 123760, 150892, 182784, 220116, 263568, 313956, 372096, 438957, 515508, 602889, 702240, 814891, 942172, 1085623
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Fourth column (m=3) of triangle A060098.
Partial sums of A038163.
Equals the tetrahedral numbers, [1, 4, 10, 20, ...] convolved with the aerated triangular numbers, [1, 0, 3, 0, 6, 0, 10, ...]. [Gary W. Adamson, Jun 11 2009]
|
|
REFERENCES
|
B. Broer, Hilbert series for modules of covariants, in Algebraic Groups and Their Generalizations..., Proc. Sympos. Pure Math., 56 (1994), Part I, 321-331. See p. 329.
|
|
LINKS
|
Peter J. C. Moses, Table of n, a(n) for n = 0..9999
Index entries for linear recurrences with constant coefficients, signature (4,-3,-8,14,0,-14,8,3,-4,1).
|
|
FORMULA
|
a(n) = Sum_{} A060098(n+3, 3).
G.f.: 1/((1-x)^7*(1+x)^3).
|
|
MATHEMATICA
|
a[n_]:=If[OddQ[n], ((1+n) (3+n) (5+n)^2 (7+n) (9+n))/5760, ((2+n) (4+n) (6+n) (8+n) (15+10 n+n^2))/5760]; Map[a, Range[0, 100]] (* Peter J. C. Moses, Mar 24 2013 *)
CoefficientList[Series[1/((1-x^2)^3*(1-x)^4), {x, 0, 100}], x] (* Peter J. C. Moses, Mar 24 2013 *)
LinearRecurrence[{4, -3, -8, 14, 0, -14, 8, 3, -4, 1}, {1, 4, 13, 32, 71, 140, 259, 448, 742, 1176}, 40] (* Harvey P. Dale, Apr 06 2018 *)
|
|
CROSSREFS
|
Cf. A002620, A002624, A096338.
Cf. A001752 (for the similar series 1/((1-x)^4*(1-x^2))).
Cf. A028346 (for the similar series 1/((1-x)^4*(1-x^2)^2)).
Sequence in context: A011936 A037235 A051912 * A208638 A173277 A036420
Adjacent sequences: A060096 A060097 A060098 * A060100 A060101 A060102
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Wolfdieter Lang, Apr 06 2001
|
|
STATUS
|
approved
|
|
|
|