login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117443 Expansion of e.g.f.: exp(x)/(cos(x) + sin(x)). 2
1, 0, 2, -4, 28, -160, 1272, -11184, 114448, -1309440, 16680992, -233587264, 3569157568, -59075960320, 1053056675712, -20111857791744, 409715696197888, -8868323731660800, 203247024658514432, -4916860703228314624, 125206830774036241408, -3347784042587048058880 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Row sums of number triangle A117442. Binomial transform of alternating sign Springer numbers (-1)^n*A001586(n).
LINKS
FORMULA
E.g.f.: 1/Q(0); Q(k)=1-(x^2)/((4*k+1)*(2*k+1)+2*x*(4*k+1)*(2*k+1)/(4*k+3-2*x-x*(4*k+3)/(x-(4*k+4)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 28 2011
G.f.: 1/Q(0) where Q(k) = 1 + 4*k*x - 2*x^2*(2*k + 1)^2/( 1 + (4*k+2)*x - 2*x^2*(2*k + 2)^2/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 10 2013
a(n) ~ (-1)^n * n! * 2^(2*n+3/2) / (Pi^(n+1) * exp(Pi/4)). - Vaclav Kotesovec, Aug 04 2014
a(n) = Sum_{k=0..n} (-1)^(n+k) * binomial(n, k) * abs(numerator( Euler(n-k, 1/4) )), where Euler(n, x) is the Euler number polynomial. - G. C. Greubel, Jun 02 2021
MATHEMATICA
CoefficientList[Series[E^x/(Cos[x]+Sin[x]), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 04 2014 *)
A117442[n_, k_]:= (-1)^(n-k)*Binomial[n, k]*Abs[Numerator[EulerE[n-k, 1/4]]]; Table[Sum[A117442[n, k], {k, 0, n}], {n, 0, 30}] (* G. C. Greubel, Jun 02 2021 *)
PROG
(Sage)
@CachedFunction
def f(n): return (-1/4)^n*sum( binomial(n, j)*2^j*euler_number(j) for j in (0..n) ) # f(n) = Euler(n, 1/4)
def A117443(n): return sum( (-1)^(n+k)*binomial(n, k)*abs(numerator(f(n-k))) for k in (0..n) )
[A117443(n) for n in (0..30)] # G. C. Greubel, Jun 02 2021
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(x)/(cos(x) + sin(x)))) \\ Michel Marcus, Jun 02 2021
CROSSREFS
Cf. A117442.
Sequence in context: A356700 A357158 A259134 * A095858 A062792 A102692
KEYWORD
easy,sign
AUTHOR
Paul Barry, Mar 16 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 18:08 EDT 2024. Contains 375765 sequences. (Running on oeis4.)