Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Mar 10 2024 15:11:31
%S 1,-1,1,3,-2,1,-11,9,-3,1,57,-44,18,-4,1,-361,285,-110,30,-5,1,2763,
%T -2166,855,-220,45,-6,1,-24611,19341,-7581,1995,-385,63,-7,1,250737,
%U -196888,77364,-20216,3990,-616,84,-8,1,-2873041,2256633,-885996,232092,-45486,7182,-924,108,-9,1
%N Number triangle read by rows, related to exp(x)/(cos(x) + sin(x)).
%H G. C. Greubel, <a href="/A117442/b117442.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n, 0) = (-1)^n*A001586(n).
%F Sum_{k=0..n} T(n, k) = A117443(n).
%F Column k has e.g.f. (x^k/k!)/(cos(x) + sin(x)).
%F Apart from signs the T(n,k) are the coefficients of the polynomials p(n, x) = 2^n*Sum_{k=0..n} binomial(n,k)*euler(k)*((x+1)/2)^(n-k). - _Peter Luschny_, Jun 08 2013
%F From _G. C. Greubel_, Jun 02 2021: (Start)
%F T(n, k) = (-1)^(n+k) * binomial(n, k) * abs(numerator( Euler(n-k, 1/4) )), where Euler(n, x) is the Euler number polynomial.
%F T(n, n) = 1.
%F T(n, n-1) = -A000027(n) = -binomial(n+1, 1).
%F T(n, n-2) = A045943(n+1) = 3*binomial(n+2, 2).
%F T(n, n-3) = -A111080(n) = -11*binomial(n+3, 3).
%F T(j, k) = (-1)^k * binomial(j+k, k) * abs(numerator( Euler(k, 1/4) )) (columns).
%F T(n, n-j) = (-1)^n * binomial(n+j, j) * abs(numerator( Euler(n, 1/4) )) (downward diagonals). (End)
%F The pair of triangles P*((I + P^4)/2)^(-1) and P^3*((I + P^4)/2)^(-1), where P denotes Pascal's triangle A007318, give the present triangle but with a different pattern of signs. - _Peter Bala_, Mar 07 2024
%e Triangle begins
%e 1;
%e -1, 1;
%e 3, -2, 1;
%e -11, 9, -3, 1;
%e 57, -44, 18, -4, 1;
%e -361, 285, -110, 30, -5, 1;
%e 2763, -2166, 855, -220, 45, -6, 1;
%e -24611, 19341, -7581, 1995, -385, 63, -7, 1;
%p A117442_row := proc(n) 2^n*add(binomial(n,k)*euler(k)*((x+1)/2)^(n-k), k=0..n);
%p seq((-1)^(n-j)*abs(coeff(%,x,j)),j=0..n) end:
%p seq(print(A117442_row(n)),n=0..5); # _Peter Luschny_, Jun 08 2013
%t row[n_] := row[n] = 2^n Sum[Binomial[n, k] EulerE[k] ((x+1)/2)^(n-k), {k, 0, n}];
%t T[n_, k_] := (-1)^(n-k) Abs[Coefficient[row[n], x, k]];
%t Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* _Jean-François Alcover_, Jun 13 2019, from Maple *)
%t Table[(-1)^(n-k)*Binomial[n, k]*Abs[Numerator[EulerE[n-k, 1/4]]], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Jun 02 2021 *)
%o (PARI) E(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1); \\ A122045
%o p(n) = 2^n*sum(k=0, n, binomial(n,k)*E(k)*((x+1)/2)^(n-k));
%o row(n) = my(rp=p(n)); vector(n+1, k, k--; (-1)^(n-k)*abs(polcoeff(rp, k))); \\ _Michel Marcus_, Nov 16 2020
%o (Sage)
%o def f(n): return (1/4)^n*sum( binomial(n, j)*2^j*euler_number(j) for j in (0..n)) # f(n) = Euler(n, 1/4)
%o def A117442(n,k): return (-1)^(n+k)*binomial(n,k)*abs(numerator(f(n-k)))
%o flatten([[A117442(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Jun 02 2021
%Y Inverse of A117440.
%Y Second column contains A161722 as subsequence.
%Y Cf. A000027, A001586, A045943, A111080, A122045, A117443 (row sums).
%K easy,sign,tabl
%O 0,4
%A _Paul Barry_, Mar 16 2006