login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059415
Numerators of sequence arising from Apery's proof that zeta(3) is irrational.
8
0, 6, 351, 62531, 11424695, 35441662103, 20637706271, 963652602684713, 43190915887542721, 1502663969043851254939, 43786938951280269198311, 13780864457900933987428453, 51520703555193710949642777493
OFFSET
0,2
REFERENCES
M. Kontsevich and D. Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
LINKS
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
FORMULA
(n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n +5)*a(n) - n^3*a(n-1), n >= 1.
EXAMPLE
0, 6, 351/4, 62531/36, ...
MAPLE
a := proc(n) option remember; if n=0 then 0 elif n=1 then 6 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
MATHEMATICA
a[n_] := Sum[ Binomial[n, k]^2*Binomial[k + n, k]^2*(Sum[1/m^3, {m, 1, n}] + Sum[(-1)^(m - 1)/(2*m^3*Binomial[n, m]*Binomial[m + n, m]), {m, 1, k}]), {k, 0, n}]; Table[a[n] // Numerator, {n, 0, 12}] (* Jean-François Alcover, Jul 16 2013, from the non-recursive formula *)
CROSSREFS
Sequence in context: A221923 A000409 A214445 * A246112 A197780 A197611
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 30 2001
STATUS
approved