OFFSET
1,5
COMMENTS
T(r,k) satisfies sum[k=0,n, C(n,k)^r*C(n+k,k)^r] = sum[k=0,n, C(n,k)*C(n+k,k)*T(r,k)] for all n=0,1,2,3...
LINKS
Eric Weisstein's World of Mathematics, Schmidt's Problem
W. Zudilin, On a combinatorial problem of Asmus Schmidt, Electron. J. Combin. 11:1 (2004), #R22, 8 pages.
FORMULA
Zudilin gives a complicated general formula involving binomial coefficients, thus proving that all T(r, k) are integers.
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 10, 56, 346, 2252, ...
1, 4, 68, 1732, 51076, 1657904, ...
1, 8, 424, 48896, 6672232, 1022309408, ...
1, 16, 2576, 1383568, 873960976, 615833930816, ...
1, 32, 15520, 39776000, 116758856608, 371558588978432, ...
MATHEMATICA
eq[r_, n_] := eq[r, n] = Sum[Binomial[n, k]^r*Binomial[n + k, k]^r, {k, 0, n}] == Sum[Binomial[n, k]*Binomial[n + k, k]*t[r, k], {k, 0, n}]; c[r_, k_] := t[r, k] /. Solve[Table[eq[r, n], {n, 0, k}], t[r, k]] // First; lg = 10; m = Table[c[r, k], {r, 1, lg}, {k, 0, lg - 1}];
Flatten[ Table[ Reverse @ Diagonal[ Reverse /@ m, k], {k, lg - 1, -lg + 1, -1}]][[1 ;; 55]] (* Jean-François Alcover, Jul 20 2011 *)
PROG
(PARI) A094424row(r, kmax)={ local(nmat, rhs, cv) ; nmat=matrix(kmax+1, kmax+1) ; rhs=matrix(kmax+1, 1) ; for(n=0, kmax, for(k=0, kmax, nmat[n+1, k+1]=binomial(n, k)*binomial(n+k, k) ; ) ; rhs[n+1, 1]=sum(i=0, n, binomial(n, i)^r*binomial(n+i, i)^r) ; ) ; cv=matsolve(nmat, rhs) ; } A094424(nmax)={ local(T, c) ; T=matrix(nmax, nmax) ; for(r=1, nmax, c=A094424row(r, nmax-1) ; for(i=1, nmax, T[r, i]=c[i, 1] ; ) ; ) ; return(T) ; } { rmax=10 ; T=A094424(rmax) ; for(d=0, rmax-1, for(c=0, d, print1(T[d-c+1, c+1], ", ") ; ) ; ) ; } \\ R. J. Mathar, Oct 06 2006
CROSSREFS
KEYWORD
AUTHOR
Ralf Stephan, May 16 2004
EXTENSIONS
More terms from R. J. Mathar, Oct 06 2006
STATUS
approved