login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094424
Array read by antidiagonals: Solutions to Schmidt's Problem.
6
1, 1, 1, 1, 2, 1, 1, 4, 10, 1, 1, 8, 68, 56, 1, 1, 16, 424, 1732, 346, 1, 1, 32, 2576, 48896, 51076, 2252, 1, 1, 64, 15520, 1383568, 6672232, 1657904, 15184, 1, 1, 128, 93248, 39776000, 873960976, 1022309408, 57793316, 104960, 1, 1, 256, 559744, 1159151680, 116758856608, 615833930816, 176808084544, 2117525792, 739162, 1
OFFSET
1,5
COMMENTS
T(r,k) satisfies sum[k=0,n, C(n,k)^r*C(n+k,k)^r] = sum[k=0,n, C(n,k)*C(n+k,k)*T(r,k)] for all n=0,1,2,3...
LINKS
Eric Weisstein's World of Mathematics, Schmidt's Problem
W. Zudilin, On a combinatorial problem of Asmus Schmidt, Electron. J. Combin. 11:1 (2004), #R22, 8 pages.
FORMULA
Zudilin gives a complicated general formula involving binomial coefficients, thus proving that all T(r, k) are integers.
EXAMPLE
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 10, 56, 346, 2252, ...
1, 4, 68, 1732, 51076, 1657904, ...
1, 8, 424, 48896, 6672232, 1022309408, ...
1, 16, 2576, 1383568, 873960976, 615833930816, ...
1, 32, 15520, 39776000, 116758856608, 371558588978432, ...
MATHEMATICA
eq[r_, n_] := eq[r, n] = Sum[Binomial[n, k]^r*Binomial[n + k, k]^r, {k, 0, n}] == Sum[Binomial[n, k]*Binomial[n + k, k]*t[r, k], {k, 0, n}]; c[r_, k_] := t[r, k] /. Solve[Table[eq[r, n], {n, 0, k}], t[r, k]] // First; lg = 10; m = Table[c[r, k], {r, 1, lg}, {k, 0, lg - 1}];
Flatten[ Table[ Reverse @ Diagonal[ Reverse /@ m, k], {k, lg - 1, -lg + 1, -1}]][[1 ;; 55]] (* Jean-François Alcover, Jul 20 2011 *)
PROG
(PARI) A094424row(r, kmax)={ local(nmat, rhs, cv) ; nmat=matrix(kmax+1, kmax+1) ; rhs=matrix(kmax+1, 1) ; for(n=0, kmax, for(k=0, kmax, nmat[n+1, k+1]=binomial(n, k)*binomial(n+k, k) ; ) ; rhs[n+1, 1]=sum(i=0, n, binomial(n, i)^r*binomial(n+i, i)^r) ; ) ; cv=matsolve(nmat, rhs) ; } A094424(nmax)={ local(T, c) ; T=matrix(nmax, nmax) ; for(r=1, nmax, c=A094424row(r, nmax-1) ; for(i=1, nmax, T[r, i]=c[i, 1] ; ) ; ) ; return(T) ; } { rmax=10 ; T=A094424(rmax) ; for(d=0, rmax-1, for(c=0, d, print1(T[d-c+1, c+1], ", ") ; ) ; ) ; } \\ R. J. Mathar, Oct 06 2006
CROSSREFS
Rows 2-5 are A000172, A000658, A092868, A379610.
Columns 2-3 seem to be A000079, A081656.
Sequence in context: A213786 A055130 A051292 * A265241 A166888 A083677
KEYWORD
nonn,tabl,changed
AUTHOR
Ralf Stephan, May 16 2004
EXTENSIONS
More terms from R. J. Mathar, Oct 06 2006
STATUS
approved